Application No. AU 2008221580 Al (19) AUSTRALIAN PATENT OFFICE

Total Page:16

File Type:pdf, Size:1020Kb

Application No. AU 2008221580 Al (19) AUSTRALIAN PATENT OFFICE (12) STANDARD PATENT APPLICATION (11) Application No. AU 2008221580 Al (19) AUSTRALIAN PATENT OFFICE (54) Title The technology of producing ferrotitanium (51) International Patent Classification(s) C22B 5/04 (2006.01) C22B 5/10 (2006.01) (21) Application No: 2008221580 (22) Date of Filing: 2008.09.25 Priority Data (31) Number (32) Date (33) Country 2007905269 2007.09.26 AU (43) Publication Date: 2009.04.09 (43) Publication Journal Date: 2009.04.09 (71) Applicant(s) Alexey Nosenkov;Nosenkova Margarita (72) Inventor(s) Nosenkov, Alexey;Nosenkova, Margarita (74) Agent Attorney Alexey Nosenkov, 50 Mundy Street, Mentone, VIC, 3194 THE TECHNOLOGY OF PRODUCING FERROTITANIUM 00 O Abstract. (N Method of alumothermal and carbothermal production of ferrotitanium has been offered. Charge consisting of oxides of titanium, iron, calcium and metallic aluminum is being heated to V) the temperature of 800-1000OC and set on fire with ignition mixture. Carbon can be used instead of aluminum. As the second option the following process is offered: titanium oxide is being mixed with any source of carbon (soot, coal etc.), heated and soaked at temperatures up to 1000 0C-25000 C. Then in the process of melting oxides of titanium, iron and/or metallic iron are being added. 00 00 (N, THE TECHNOLOGY OF PRODUCING FERROTITANIUM 00 0 Ferrotitanium is a metallic alloy of titanium and iron and it is widely used as an active alloying Cq addition in the production of stainless and interstitial free steels. Traditionally ferrotitanium is produced by using metallic scrap. However production of ferrotitanium by reduction of titanium V oxides did not find wide application due to the absence of robust technology that would allow to produce ferrotitanium with 70% titanium contents. The invention consists in aluminothermic and carbothermic production of ferrotitanium, 00 including out-of-furnace reduction of charge comprising oxides of titanium, oxides of iron, Saluminum, carbon and oxide of calcium. Titanium ore concentrates (ilmenite, leucoxene, Cq perovskite, rutile) are being used as source of titanium component of the charge. Sources of 00 Scarbon are being used as soot,coal, charcoal (including activated coals), graphite .The charge N components are being mixed until the ratio of oxides of iron mass to titanium mass equals 1:(1,0 oxide of calcium equals 0,2-0,5 of the total mass of oxides of titanium and iron and aluminum 1:(1,8-2.2),carbon equals 0-30% of aluminium content. Before reduction the charge is being heated to the temperature of 800-1000C 0 in inert atmosphere and then kept until the temperature is even across the charge. The reduction process is started by igniting the charge with consequent switching off the heat. Before feeding of the charge its components are being crushed. First oxides of titanium and aluminum are being crushed and mixed and then the rest of the charge components are added and mixed one more time. Feeding of the charge into the crucible is done in portions with consequent compression. Rutile, ilmenite, leucoxene, perovskite or their mixture are being used as source of titanium and iron. The charge is ignited to start the reduction process by using thermal mixture of iron oxide and aluminium. Mixing and crushing of charge components takes place in vacuum or inert atmosphere. Unlike any other known methods of production of ferrotitanium the invented method uses only the energy of reduction reaction without external heating and the aluminothermic and carbothermic reduction of titanium and iron oxides is performed out of furnace. This method permits to melt the ferrotitanium containing up to 70% of titanium and no more then 4% of aluminium. The necessary condition of out-of -furnace method of reduction is the stated ratio of the oxides of titanium, iron, calcium and aluminum. Another distinctive feature of the method is also the use of ores containing oxides of titanium and iron as the only raw material components. 2 Various sources of raw material containing titanium can be used for that method such as rutile 0(90-98% TiO2), ilmenite (35-50% TiO2; 50-65% FexOx). This factor determines the possibility of industrial implementation of the invented method. The invented method will ensure energy savings as for the initiation of the reduction process, metal melting (at 1600C is not required. The charge is simply being heated through evenly to C, 800-1000C and ignited with power switched off To ensure even distribution of the reaction throughout the whole volume of the material and to 0stop aluminum discharge even distribution of reaction components is required. This is achieved 00 by prior crushing and mixing of the charge components. Besides even distribution of the charge components preliminary crushing also increases the contact surface of oxides of titanium and 000aluminum and increases inner energy of particles due to deformation. Establishing parameters. The use ofFeO2, TiO2 at the ratio of 1 0-3, 0) in mass as the components of the charge after reduction allows to produce ferrotitanium with 35 to 70% titanium content. Addition of oxide of calcium at the ratio of 0,2-0,5 of the oxide of iron and titanium mass increases the extraction of titanium into metal. It also increases the fusibility of aluminothermic slag due to formation of compounds CaO.(A1203)x during the fusion (fusion temperature does not increase 1700C°). Heating of the charge to 800-1000C in inert atmosphere allows achieving reduction out of furnace. Final product depends on the ratio of the charge components FeO2:TiO2 equal to as follows: The lower border results in production of ferrotitanium with titanium contents of less than 35% mass. The components ratio of 1: 3 results in production of ferrotitanium with titanium contents of not less than 70%. Depending on the required contents of titanium in the final alloy different ratio ofrutile and ilmenite is used in the charge. Addition of oxide of calcium into the charge at the ratio of to the total mass of oxides of titanium and iron allows to produce ferrotitanium out-of-furnace with extraction of titanium into metal equal to 80-85%. It also helps the formation of clear border between metal and slag during reduction. The upper border corresponds to the maximum possible contents of oxide of calcium in the charge which allows to carry out reduction without damping and to ensure the necessary speed of reaction distribution. Higher than stated quantity of CaO in the charge slows down the reaction distribution which causes early slag hardening and formation of slag crust with metallic insertions into the walls of the crucible. The lower border of the ratio equals the minimum quantity of oxide of calcium in the charge which is required to achieve high extraction of titanium Decreasing that quantity of CaO will cause excessive decrease of titanium extraction into metal (60% and less). In that case reduced titanium is caught in the slag and is not 0 transformed into ingot. Addition of peroxide of barium (BaO2) into the charge at 5-20% of the total mass of oxide of calcium increases the extraction of titanium up to 87-95%. Peroxide of barium could be replaced by sodium chlorate (NaC103) or potassium chlorate (KC103).Addition of chlorites into the C, charge at 5-15% of the total mass of oxide of calcium increases the extraction of titanium up to 90-97%. OThe quantity of aluminum added to the charge is determined by its acceptable contents in the 00 final product. Using the ratio of total contents of oxides of titanium and iron to aluminum as 1:(0,45-0,55) allows to produce ferrotitanium with aluminum contents of4-15% depending on its 00 O titanium contents. The lower ratio border is the minimum quantity of aluminum in the charge required for the reduction process. Increasing aluminum contents in the charge above the stated upper border of the ratio results in higher contents of aluminum in ferrotitanium while the degree of reduction of metals into ferrotitanium remains the same. The temperature interval for preliminary charge heating is determined by the following: At temperature below 800C0 reduction process goes at low speed with slag crust forming on the wall of the crucible with metal insertions, i.e. metal and slag are not being separated. Heating of the charge to temperatures higher than 1000C0 causes spontaneous ignition of the charge and uncontrolled reduction process that may cause the charge to leak from the crucible. Distinctive feature of the invented method is preliminary crushing of separate components of the charge of aluminothermic reduction, i.e. of oxide of titanium and aluminum taken at the ratio of The crushing increases the contact surface of oxide of titanium and aluminum particles and increases the inner energy of the particles. As an option ferrotitanium can be produced by reduction of titanium slag, rutile and ilmenite with aluminium, silicon and (or) carbon soot, coal, charcoal (including activated coals), graphite or other sources of carbon. The process can take place in a vacuum induction furnace, arc, plasma arc or electrical resistance furnace. If melting takes place in an induction or arc furnace then a mixture of slag and ilmenite with a source of carbon (with or without rutile additives) is being loaded first and melting is carried on at the temperature of 1000C-2500C for 5-180 min depending on the mixture composition. If melting takes place in a plasma arc furnace or a resistance furnace then rutile or its mixture with other titanium minerals or titanium slag can be used as raw material. As a result of the first stage titanium carbide (TIC), its derivatives and free carbon are produced. The second stage involves addition of iron oxide and/or ilmenite, rutile (and also other possible titanium minerals as the source of titanium oxide) and /or metallic iron and smelting at the 4 highest possible temperature.
Recommended publications
  • Developments in Uranium Resources, Production, Demand and the Environment
    IAEA-TECDOC-1425 Developments in uranium resources, production, demand and the environment Proceedings of a technical committee meeting held in Vienna, 15–18 June 1999 January 2005 IAEA-TECDOC-1425 Developments in uranium resources, production, demand and the environment Proceedings of a technical committee meeting held in Vienna, 15–18 June 1999 January 2005 The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria DEVELOPMENTS IN URANIUM RESOURCES, PRODUCTION, DEMAND AND THE ENVIRONMENT IAEA, VIENNA, 2004 IAEA-TECDOC-1425 ISBN 92–0–112904–1 ISSN 1011–4289 © IAEA, 2005 Printed by the IAEA in Austria January 2005 FOREWORD Globalization has led to the growing importance of the uranium production industries of the world’s developing countries. Though trade restrictions continue to impede completely free access to the worldwide uranium market, the uranium resources and production capabilities of the developing countries are becoming increasingly important in assuring the adequacy of uranium supplies to meet projected worldwide demand. Therefore, papers presented at this meeting provide an important overview of uranium production operations in developing countries as well as offering insight into future production plans and potential. Along with their increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny
    [Show full text]
  • Uranium and Thorium Resources in India: UNFC System
    Uranium and thorium resources in India: UNFC system P.S.Parihar Atomic Minerals Directorate for Exploration and Research Department of Atomic Energy Government of India 1 21/08/2013 Government of India’s Policy on Atomic Minerals The federal status of the DAE and the powers invested in it under the Indian Atomic Energy Act (1948 and 1962) as amended from time to time, bestow upon it several rights to facilitate atomic mineral exploration. The more significant ones are- . Exclusive rights to conduct exploration for uranium, thorium and other prescribed minerals such as beryllium, lithium, niobium, tantalum and rare-earth elements all over the country . Exclusive rights to buy prescribed minerals from private mine owners produced incidental to mining of other economic minerals. 30/10/2013 - . Rights to access to surface and sub-surface data on areas under exploration or mining/recovery for oil, coal, minerals and ground water by Government or Public Sector Organisations. The facility includes carrying out of gamma-ray logging of boreholes and checking of mine workings and collection of samples etc. 2 UNFC workshop, New Delhi workshop, UNFC Government of India’s Policy on Atomic Minerals Uranium exploration, production and utilisation are under the control of Central Government. Only public sector companies under Government of India are allowed to explore and mine atomic minerals viz. U, Th, etc. Present system of reporting of uranium reserves in India is as per the IAEA system of uranium resource classification . Indicated – [Reasonable
    [Show full text]
  • Arizona Department of Mines and Mineral Resources
    Arizona Department of Mines and Mineral Resources 1502 West Washington, Phoenix, AZ 85007 Phone (602) 255-3795 1-800-446-4259 in Arizona FAX (602) 255-3777 www.admmr.state.az.us Titanium Circular 9, August 1982 by Michael N Greeley, Mining Engineer Titanium is a lightweight metal that is virtually as strong as steel. As our technologies and industries have become increasingly sophisticated, demand for this relatively scarce, but highly desirable metal has increased rapidly. This information circular is written to acquaint the prospector and miner with titanium and its uses. A resume of typical geologic environments and production possibilities in Arizona is given. Uses phisticated needs will vie for a greater share of the The largest market for titanium is in the manufacture world's supply of this unique metal. of pigments. Because of its high refractive index, titanium dioxide pigment imparts whiteness, opacity, Geology and Mineralogy and brightness to paints, varnishes, and lacquers. The most important titanium minerals are anatase Titanium pigment is also used greatly in paper coat­ (Ti0 ), ilmenite (FeTi0 ), perovskite (CaTi03), ru- 2 3 ings and as paper fillers. Many plastic products such tile (Ti0 ), sphene (CaTiSiOS), and leucoxene. Leu­ as polyethylene, polyvinyl chloride, and polystyrene 2 coxene, a mineraloid, is an alteration product of il­ incorporate titanium pigment because of its resis­ menite, from which a portion of the iron has been tance to degradation by ultraviolet light and its leached. Currently the minerals of commercial inter­ chemical inertness. est are ilmenite, leucoxene, and rutile. Production historically has come from three types of deposits: Titanium dioxide pigment and other titanium com­ Beach and stream placers, massive deposits of titani­ pounds are used in many miscellaneous applications, ferous iron ore, and igneous complexes in which ru­ including rubber tires, floor and wall coverings, tile occurs in association with anorthosite and simi­ glass fibers, ceramic capacitors, carbide cutting lar, mafic crystalline rocks.
    [Show full text]
  • Info Sheet This Is Followed by Heliborne Gamma-Ray Studies of Ore, As a Prelude to Commercial Mining
    Research and Development: In order to multidisciplinary geoscientific skills. AMD will understand the genesis and controls of uranium continue its exploration efforts to fullfil the atomic ATOMIC MINERALS DIRECTORATE FOR mineralisation, basic research in the fields of minerals requirement of country’s nuclear power geology, geophysics, geochemistry and also programme. EXPLORATION AND RESEARCH (AMD) in allied topics such as physics, chemistry and electronics is being carried out. Atomic Minerals Directorate for Exploration spectrometric and geophysical surveys1 to identify Other Activities: and Research (AMD) is one of the oldest units potential targets with abnormal radioelemental *AMD is also entrusted to carry out geological / of Department of Atomic Energy (DAE) and plays concentration. geotechnical studies related to site selection for an important role in the front and back end of nuclear power plants and repositories for the the nuclear fuel cycle. AMD was established as The potential areas delineated by heliborne disposal of radioactive wastes generated from Rare Minerals Survey Unit in 1949, subsequently surveys are taken up for ground reconnaissance these plants. renamed as Raw Materials Division (RMD) and radiometrics2 using portable gamma-ray *AMD provides professional and analytical brought under the Atomic Energy Commission measuring instruments such as Scintillometer, services. on October 3, 1950. RMD was later renamed as Gamma Ray Spectrometer etc., regional/detailed *AMD Studentship Programme has been initiated Atomic Minerals Division in 1958 and rechristened geological, geochemical (rock, soil, radon, water to impart basic field training and to encourage as Atomic Minerals Directorate for Exploration and and stream sediments) and ground-geophysical university students to take up their dissertation Research (AMD) in 1998.
    [Show full text]
  • 20111023 Tizir Creation Presentation FINAL2
    TiZir Creation of a vertically integrated player in the mineral sands sector Joint venture between ERAMET and MDL October 26, 2011 Jean-Didier Dujardin - CFO Jean-Michel Fourcade - VP Research Innovation Engineering and Purchasing . Chairman of ETI ALLOYS, ORES AND PEOPLE. TIZIR – JOINING TWO HIGHLY COMPLEMENTARY OPERATIONS ERAMET contributes 100% of its shares in ETI and cash of US$30m to TiZir, and MDL contributes its 90% participation in the Grande Côte Project 50% 50% Republic of Senegal 10% 90% 100% +US$30m of cash Grande Cote (Senegal) ETI (Tyssedal, Norway) Mineral Sands Project Titanium Slag & Iron Plant 20+ year mine life Highly strategic asset – 1 of only 5 such facilities Top quartile on revenue/cost Produces an upgraded titanium Production commences late ‐2013 feedstock from ilmenite At full capacity, will produce: At current capacity 1, produces: - 85 ktpa of zircon - 200 ktpa of titanium ‘slag’ - 575 ktpa of ilmenite - 110 ktpa of high purity pig iron - 16 ktpa of rutile/leucoxene TiZir integrates a Tier 1 mineral sands ore body with a highly strategic titanium feedstock upgrading facility which should produce 7% of global zircon & titanium feedstock Note: 1 A feasibility27/10/2011 study is underway 19:28:24to build a second furnace – JV between ERAMET and MDL – October 2011 1 TRANSACTION AND FINANCING STRUCTURE Eramet and MDL contribute respectively ETI together 50% 50% with US$30m in cash and 90% of Grande Côte to TiZir and get a 50/50 ownership Around US$150m Around US$150m of financing of financing contribution to contribution to TiZir Contribution Contribution TiZir The financing requirement of c.
    [Show full text]
  • TITANIUM by Joseph Gambogi
    TITANIUM By Joseph Gambogi Domestic survey data and tables were prepared by Robin C. Kaiser, statistical assistant, and the world production table was prepared by Regina R. Coleman, international data coordinator. Titanium is a metallic element that occurs in many minerals, offered for sale. At yearend 2001, the National Defense such as anatase, brookite, ilmenite, leucoxene, perovskite, rutile, Stockpile held 18,600 t of titanium sponge (U.S. Department of and sphene. Of these minerals, only ilmenite, leucoxene, and Defense, Defense National Stockpile Center, 2001a). rutile have significant economic importance. In general, titanium metal alloys are corrosion resistant and have a high Production strength-to-weight ratio. The density of titanium is about 60% that of iron but has comparable strength. Tests on titanium in a Mineral Concentrates.—Titanium mineral concentrates of seawater environment have shown no measurable evidence of economic importance include ilmenite, leucoxene, rutile, slag, corrosion (Titanium Metals Corp., 1998§1). The combination of and synthetic rutile. Mining of titanium minerals is usually superior corrosion resistance and high strength-to-weight ratio performed using surface methods. A dredge is often used for fuels titanium’s use in various applications such as aircraft the recovery of titanium-mineral placer deposits. Gravity engines, deep-well drill pipe, golf clubs, and military tanks. spirals are used for wet separation of heavy minerals, while On a tonnage basis, most titanium is not consumed in its magnetic and high-tension separation circuits are used to metal form but as titanium dioxide (TiO2) pigment, a white separate the heavy-mineral constituents. Ilmenite is often pigment in paints, paper, and plastics.
    [Show full text]
  • Iluka Resources Titanium Mineral Feedstocks History and Future Trends
    Iluka Resources Titanium Mineral Feedstocks History and Future Trends JASON GEIGER October 6, 2010 www.iluka.com Disclaimer – Forward Looking Statements This presentation contains forward-looking statements that are subject to risk factors associated with exploring for, developing, mining, processing and sale of minerals. These forward-looking statements are subject to a range of risk factors associated, but not exclusive, with potential changes in: • exchange rate assumptions • product pricing assumptions • mine plans and/or resources • equipment life or capability • current or new technical challenges • market conditions • management decisions While Iluka has prepared this information based on its current knowledge and understanding and in good faith, there are risks and uncertainties involved which could cause results to differ from projections. Iluka shall not be liable for the correctness and/or accuracy of the information nor any differences between the information provided and actual outcomes, and furthermore reserves the right to change its projections from time to time. Iluka does not undertake to update the projections provided in this document on a regular basis. All currency referred to is Australian denominated unless otherwise indicated. Presentation Outline • Introduction to Titanium Mineral Feedstocks • Industry Overview • Industry History • Iluka Resources Overview and Products • Recent Market Conditions • Future Trends Introduction to Titanium Mineral Feedstocks and Industry Overview Where Are Titanium Mineral Feedstocks? Ti on Wikipedia • Ti is the ninth-most abundant element in the Earth's crust (0.63% by mass) and the seventh-most abundant metal • Contained in most igneous rocks and sediments derived from them • Proportion in soils is approximately 0.5 to 1.5%.
    [Show full text]
  • Leucoxene L88
    SAFETY DATA SHEET LEUCOXENE L88 1. IDENTIFICATION OF MATERIAL SUPPLIER Product Names: Leucoxene L88 Other Names: Leucoxene, L88, L91, Altered Ilmenite, Low Grade Rutile, Titanium Ore Concentrate Uses: Leucoxene is used predominantly as a raw material for titanium dioxide pigment used in paints and cosmetics. Leucoxene is also used in titanium metal production for aircraft components, medical applications (artificial joints and limbs), sporting equipment and watches and in the manufacture of welding electrodes. Company: Keysbrook Leucoxene Pty Ltd ABN 49 137 091 297 Address: 1 Alumina Road, East Rockingham WA 6168 Telephone: +61 8 9725 5444 Fax: +61 8 9725 4757 2. HAZARDS IDENTIFICATION Not classified as hazardous according to criteria of Australian Safety and Compensation Council (ASCC). Risk Phrases None Safety Phrases None 3. COMPOSITION / INFORMATION ON INGREDIENTS Ingredients (typical) Cas No Weight Rutile/Anatase/Leucoxene 1317-80-2 / 13463-67-7 / NA 87-90% Quartz 14808-60-7 2-5% Zircon 14940-68-2 1-2% Uranium (U) 7440-61-1 1-30ppm Thorium (Th) 7440-29-1 180-250ppm Ferric Oxide 1309-37-1 2-5% Alumina 1344-28-1 1-3% 4. FIRST AID MEASURES Swallowed: First aid is unlikely to be required, but if necessary wash mouth out with water ensuring the mouthwash is not swallowed. Give one or two glasses of water to drink. Seek medical attention if a large quantity has been swallowed. Inhaled: Blow nose to remove particulates from nose. Move to area with fresh air. Seek medical attention if adverse reaction develops. Skin: Remove contaminated clothing gently to avoid creating dust.
    [Show full text]
  • Ilmenite and Rutile
    ILMENITE AND RUTILE Indian Minerals Yearbook 2013 (Part- III : MINERAL REVIEWS 52nd Edition ILMENITE AND RUTILE (FINAL RELEASE) GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES Indira Bhavan, Civil Lines, NAGPUR – 440 001 PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : [email protected] Website: www.ibm.gov.in July, 2015 27-1 ILMENITE AND RUTILE 27 Ilmenite & Rutile ndia is endowed with large resources of heavy 160.72 sq km inland areas in Tamil Nadu and West Iminerals which occur mainly along coastal Bengal have been investigated for over six decades stretches of the country and also in inland placers. by AMD. The ilmenite resources estimation for the Heavy mineral sands comprise a group of seven areas explored up to 2012 has been completed and minerals, viz, ilmenite, leucoxene (brown ilmenite), the resources are up from 520.38 million tonnes to rutile, zircon, sillimanite, garnet and monazite. 593.50 million tonnes (including leucoxene), inclusive Ilmenite (FeO.TiO2) and rutile (TiO2) are the two of indicated, inferred and speculative categories. chief minerals of titanium. Titanium dioxide occurs Resource estimation for the areas explored during in polymorphic forms as rutile, anatase (octahedrite) 2012-13 is under progress. The most significant and brookite. Though, brookite is not found on a deposits which are readily available and attract large-scale in nature, it is an alteration product of attention of industry for large-scale operations are other titanium minerals. Leucoxene is an alteration as follows: product of ilmenite and found associated with ilmenite. State/Deposit Ilmenite reserves RESOURCES (In million tonnes) Ilmenite and rutile along with other heavy Andhra Pradesh 1.
    [Show full text]
  • Geology and Ore Deposits
    WASHINGTON GEOLOGICAL SURVEY HENRY LANDES, Sta.te Geologist BULLETIN No. 1 GEOLOGY AND ORE DEPOSITS OF REPrr.BLIC MINING DISTRICT By JOSEPH B. fillPLEBY OLYMPIA, WASB. : E. L . BOARDMAN, PUBLIC PRINTE.R. 1910. BOARD OF GEOLOGICAL SURVEY GovERNOR M. E. li.AY, Chair-mani STATE TREASURER. J. G. LEWIS, S ecretary PRESIDENT T. F. KANE PRESIDENT E. A. BRYAN HENRY LANDES, State Geologist SotoN SHEDD, Assista;nt State Geologist CONTENTS Page ILLUSTRATIONS . • • • . • • • . • • • • • • • • • • . • • • • • • . • • . • • . • • . • . • • . • . • • • 5 LETTER OF TBANSMJTTAL • . • • . • . • . • • • • • • • • • • • . • • • . • . • • • • • 6 INTRODUCTION . 7 Location . ... 7 Field work and acknowledgments. 7 Previous work ............................. ·. 8 General remarks . 8 CHAPTER I-P:HYSIOORAPRY • . • • . • • • . • • . • . • • . • • • 9 Topography . 9 General character . 9 Drainage . ... 9 Principal features . 9 Changes in drainage . 10 Glacial features . 10 Eocene peneplaln . 11 Correlation . 12 CUmate . ... 14 CHAPTER II-GENEBAL GEOLOGY • . • . • . • . • . • . • • 15 General statement . 15 Description of rock formations............................... 16 Paleozoic series . 16 Distribution . 16 Cbaracterlstlcs . 16 Age . ... .. 17 Granodiorites . 17 Distribution . .. 17 Characteristics . 18 Age . ... 18 Tertiary formations . 19 Relation to older formations. 19 Daclte flow conglomerate. 20 Distribution . 20 Characteristics . 21 Age • • • . • . • . • . • • •. • . • . • . • • . • • . •.• . • • . • . 22 Andesite flows and lake beds...........................
    [Show full text]
  • Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas
    minerals Case Report Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas Caroline C. Gonçalves and Paulo F. A. Braga * Centre for Mineral Technology (CETEM), Av. Pedro Calmon 900, Cidade Universitária, Rio de Janeiro 21941-908, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-21-3865-7222 Received: 15 January 2019; Accepted: 6 March 2019; Published: 13 March 2019 Abstract: In Brazil, heavy mineral sand deposits are still barely exploited, despite some references to Brazilian reserves and ilmenite concentrate production. The goal of this project is to characterize and investigate the potential recovery of heavy minerals from selected Brazilian placer occurrences. Two areas of the coastal region were chosen, in Piaui state and in Bahia Provinces. In all samples, the heavy minerals of interest (ilmenite, monazite, rutile, and zircon) were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques and also quantified by X-ray fluorescence spectrometry (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The total heavy minerals (THM) in the Piaui samples were 6.45% and 10.14% THM, while the figure for the Bahia sample was 3.4% THM. The recovery test of the Bahia sample, using only physical separation equipment such as a shaking table and magnetic separator, showed valuable metallurgical recoveries at around or greater than 70% for each stage, and the final concentrate of pure ilmenite was composed of up to 60.0% titanium dioxide after the differential magnetic separation. Another aim is to compile accessible information about Brazilian heavy mineral main deposits complemented with a short economic overview.
    [Show full text]
  • Geology of the Mostadmarka and Selbustrand Area, Trøndelag
    NORGES GEOLOGISKE UNDERSØKELSE NR. 232 GEOLOGY OF THE MOSTADMARKA AND SELBUSTRAND AREA, TRØNDELAG By T. TORSKE OSLO 1965 UNIVERSITETSFORLAGET \ Editor for the Publications of the Geological Survey of Norway: State geologist Fredrik Hagemann. Contents ABSTRACT 5 ACKNOWLEDGMENTS 6 INTRODUCTION 6 GEOLOGICAL SETTING 7 Lower Sedimentary Unit 8 Greenstone Unit 10 ROCK DESCRIPTION 12 I. SUPRACRUSTAL ROCKS 13 Lower Sedimentary Unit 13 Lower phyllite 13 Metagreywackes 13 Greywacke, sub-greywacke, and albite-quartzite 14 Greywacke-phyllite 1 5 Calcareous arkose 16 Calcareous greywacke 16 Quartz schist 16 Upper phyllite 18 Greenstone Unit 19 Volcanic rocks 19 Massive greenstone 21 Porphyritic greenstone 23 Pyroclastic rocks 24 Sedimentary rocks within the Greenstone Unit 28 Quartzite 28 Quartz schist 32 Phyllite 33 Greenstone breccia 33 Upper Sedimentary Unit 3 5 Conglomerates 3 5 Green conglomerate 36 Conglomerate with carbonate-rich matrix 37 Light grey-coloured conglomerate 37 Conglomerate N of Selbutjern 38 Andesite tuff 3 8 Dacitic tuff with admixed sedimentary material 40 Calcareous arkose 41 Fine-grained sandstone and shale 42 11. INTRUSIVE ROCKS 44 Saussurite gabbro 44 Quartz keratophyre 46 Amphibole-stilpnomelane-quartz keratophyre 48 Tourmaline-bearing quartz keratophyre 50 Quartz keratophyre-like rock near Løyås 50 Hornblende porphyrite 51 Trondhjemite : 52 Amphibole-epidote-biotite schist 52 111. ORE DEPOSITS 54 Sulphide ores 5 5 Layered pyrite-magnetite ores 56 Black feis 57 Iron ores 58 SEDIMENTATION, VOLCANISM, PETROGENESIS 60 ORE GENESIS 66 Z^K.Ud^Uli.^l. GEOLOGY 73 SAMMENDRAG 76 Abstract The bedrock of the area consists of metamorphic epiclastic, volcanic, and intrusive rocks ok assumed Lower Ordovician age, assigned to, and lithologically matching tne rocks of, tne Roros, Storen and Lower Hovin Groups of tne Trondheim Region.
    [Show full text]