The Biosynthesis of the Molybdenum Cofactor in Escherichia Coli and Its Connection to Fes Cluster Assembly and the Thiolation of Trna

Total Page:16

File Type:pdf, Size:1020Kb

The Biosynthesis of the Molybdenum Cofactor in Escherichia Coli and Its Connection to Fes Cluster Assembly and the Thiolation of Trna Hindawi Publishing Corporation Advances in Biology Volume 2014, Article ID 808569, 21 pages http://dx.doi.org/10.1155/2014/808569 Review Article The Biosynthesis of the Molybdenum Cofactor in Escherichia coli and Its Connection to FeS Cluster Assembly and the Thiolation of tRNA Silke Leimkühler Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany Correspondence should be addressed to Silke Leimkuhler;¨ [email protected] Received 16 January 2014; Accepted 28 March 2014; Published 29 April 2014 Academic Editor: Paul Rosch¨ Copyright © 2014 Silke Leimkuhler.¨ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The thiolation of biomolecules is a complex process that involves the activation of sulfur. The L-cysteine desulfurase IscS is the main sulfur mobilizing protein in Escherichia coli that provides the sulfur from L-cysteine to several important biomolecules in the cell such as iron sulfur (FeS) clusters, molybdopterin (MPT), thiamine, and thionucleosides of tRNA. Various proteins mediate the transfer of sulfur from IscS to various biomolecules using different interaction partners. A direct connection between the sulfur- containing molecules FeS clusters, thiolated tRNA, and the molybdenum cofactor (Moco) has been identified. The first step of Moco biosynthesis involves the conversion of 5 GTP to cyclic pyranopterin monophosphate (cPMP), a reaction catalyzed by a FeS cluster containing protein. Formed cPMP is further converted to MPT by insertion of two sulfur atoms. The sulfur for this reaction is provided by the L-cysteine desulfurase IscS in addition to the involvement of the TusA protein. TusA is also involved in the sulfur transfer for the thiolation of tRNA. This review will describe the biosynthesis of Moco in E. coli in detail and dissects the sulfur transfer pathways for Moco and tRNA and their connection to FeS cluster biosynthesis. 1. An Introduction to the Importance of fundamental since the reactions include the catalysis of key Molybdenum and Molybdoenzymes in steps in carbon, nitrogen, and sulfur metabolism. Bacteria There are two distinct types of molybdoenzymes: molyb- denum nitrogenase has a unique molybdenum-iron-sulfur Molybdenum is the only second row transition metal essen- cluster, the [Fe4S3]-(bridging-S)3-[MoFe3S3] center called tial for biological systems, which is biologically available as FeMoco [4]. Nitrogenase catalyzes the reduction of atmo- molybdate ion [1]. Molybdenum has a chemical versatility spheric dinitrogen to ammonia. All other molybdoenzymes that is useful to biological systems: it is redox-active under contain the molybdenum cofactor (Moco). In Moco the physiological conditions (ranging between the oxidation molybdenum atom is coordinated to a dithiolene group on states VI and IV); since the V oxidation state is also accessible, the 6-alkyl side chain of a pterin called molybdopterin (MPT) the metal can act as transducer between obligatory two- [3, 5]. The chemical nature of Moco has been determined electron and one-electron oxidation-reduction systems and byRajagopalanandcoworkersin1982[5]. They postulated it can exist over a wide range of redox potentials [2, 3]. a structure of the cofactor consisting of a pterin deriva- The metal forms the active site of molybdoenzymes, which tive, with the pterin ring substituted at position 6 with a execute key transformations in the metabolism of nitrogen, phosphorylated dihydroxybutyl side chain containing a cis- sulfur, and carbon compounds [3]. The catalyzed reactions dithiolene bond (Figure 1). The sulfur atoms of the dithiolene are in most cases oxo-transfer reactions; for example, the group were proposed to coordinate the molybdenum atom, hydroxylationofcarboncentersandthephysiologicalroleare with a stoichiometry of one MPT per Mo. Moco is present 2 Advances in Biology O O Mo − S O O H N S HN 2− OPO3 N O H2N N H Molybdenum cofactor (Moco) Mo-MPT O − − OH OH O O O H H S H Mo O H H P P O N N NH2 S Mo O O OH S O O O O O H O Cys N S H Guanine NH HN Cytosine N S S N HN O/S H O O O O O O 2− S O N N O P P H H OPO3 Mo H2N H N O O S − − H H H2N N H X O O OH OH H N S HN Guanine O O O O O O N N O P P H H H2N H − − H H O O OH OH Xanthine oxidase family Sulfite oxidase family DMSO reductase family Sulfurated MCD di-oxo Moco bis-MGD Aldehyde oxidoreductase Sulfite oxidase (YedY) TMAO reductase A (TorA) (PaoABC) TMAO reductase Z (TorZ) Xanthine dehydrogenase DMSO reductase (DmsABC) (XdhABC, XdhD) Nitrate reductase A (NarGHI) Nitrate reductase Z (NarZYV) Peripl. Nitrate reductase (NapA) Biotin sulfoxide reductase (BisC) Formate dehydrogenase N (FdnGHI) Formate dehydrogenase O (FdoGHI) Formate dehydrogenase H (FdhF) Figure 1: The different structures of Moco in E. coli. The basic form of Moco is a 5,6,7,8-tetrahydropyranopterin with a unique dithiolene group coordinating the molybdenum atom, named Mo-MPT. Mo-MPT (shown in the tri-oxo structure [25]) can be further modified and in E. coli three different molybdenum-containing enzyme families exist classified according to their coordination at the molybdenum atom: the xanthine oxidase, sulfite oxidase, and DMSO reductase families. In E. coli, the xanthine oxidase family contains the sulfurated MCD cofactor. The sulfite oxidase family is characterized by a di-oxo Moco with an additional protein ligand, which usually is a cysteine. The DMSO reductase family contains two MGDs ligated to one molybdenum atom with additional ligands being an O/S and a sixth ligand X, which can be a serine, a cysteine, a selenocysteine, an aspartate or a hydroxide, and/or water molecule. The characterized molybdoenzymes in E. coli are shown in blue for each family. in more than fifty enzymes in bacteria, including nitrate with one MPT equivalent coordinated to the molybdenum reductases, sulfite dehydrogenase, xanthine oxidoreductase, atom,oneoxo-group,onesulfido-group,andonehydroxo- aldehyde oxidoreductase, DMSO reductase, formate dehy- group [3](Figure 1). The sulfido-group is cyanide labile [8– drogenase, CO dehydrogenase, and various other enzymes 10], and removal of the sulfido group results in formation of [3]. In the redox reactions catalyzed by molybdoenzymes an inactive desulfo-enzyme, with an oxygen ligand replacing electron transfer is mediated by additional redox centers the sulfur at the Mo active site [10]. The enzymes of this present in the protein or on other protein domains, like FeS family are involved in two-electron transfer hydroxylation centers, cytochromes, or FAD/FMN cofactors [6]. During and oxo-transfer reactions with water as the source of oxygen these redox reactions, the molybdenum atom can exist in [7, 11]. Among the members of the XO family in E. coli are the various oxidation states and couple oxide or proton transfer xanthine dehydrogenase XdhABC, the periplasmic aldehyde with electron transfer [2]. oxidoreductase PaoABC, and the so far uncharacterized The different enzymes contain different forms of Moco xanthine dehydrogenase homologue XdhD (Figure 1, Table 1) and were historically categorized into three families based on [6, 12]. the ligands at the molybdenum atom, which are characteristic Enzymes of the SO family coordinate a single equivalent VI for each family (Figure 1): the xanthine oxidase (XO) family, ofthepterincofactorwithanMPT-Mo O2 core in its the sulfite oxidase (SO) family, and the dimethyl sulfoxide oxidized state and usually an additional cysteine ligand which (DMSO) reductase family [3, 7]. The XO family is charac- is provided by the polypeptide [3]. Members of this family VI terized by an MPT-Mo OS(OH) core in the oxidized state, catalyzethetransferofanoxygenatomeithertoorfrom Advances in Biology 3 Table 1: Overview on the E. coli molybdoenzymes and the involved atom. This sulfur is mobilized from L-cysteine in the cell, chaperones required for maturation/cofactor insertion. by a general pathway which links Moco biosynthesis to the synthesis of other sulfur-containing biomolecules like FeS Subunits Chaperone Moco Mo-enzyme cluster assembly and the thiolation of tRNA. Additionally, FeS DMSO reductase family cluster containing proteins are required for the biosynthesis Nitrate reductase A NarGHI NarJ bis-MGD of the first intermediate in Moco biosynthesis. Thus, we will Nitrate reductase Z NarZYV NarW bis-MGD dissect the sulfur transfer pathway for the biosynthesis of Peripl. nitrate reductase NapABCGH NapD bis-MGD Moco and FeS clusters and their connection to the thiolation oftRNAinthesecondpartofthereview.Thebiosynthesis TMAO reductase A TorAC TorD bis-MGD of the molybdenum cofactor in eukaryotes has been addi- TMAO reductase Z TorZY ? bis-MGD tionally studied and is also highly conserved. Since there DMSO reductase DmsABC DmsD bis-MGD arenumerousreviewsavailableintheliteraturedescribing Formate dehydrogenase N FdnGHI FdhD bis-MGD Moco biosynthesis in humans and plants [17–20], we focus Formate dehydrogenase O FdoGHI FdhD bis-MGD only on the biosynthesis in bacteria and the newly discovered Formate dehydrogenase H FdhF FdhD bis-MGD connection to other biosynthetic pathways. Biotin sulfoxide reductase BisC — bis-MGD Selenate reductase YnfEFGH DmsD bis-MGD 2. The Biosynthesis of the Molybdenum ? YdhYVWXUT ? ? Cofactor in E. coli ? YdeP ? ? Using a combination of biochemical, genetic, and structural Xanthine oxidase family approaches, Moco biosynthesis has been extensively stud- Aldehyde oxidoreductase PaoABC PaoD MCD ied for decades. In all bacteria Moco is synthesized by a Xanthine dehydrogenase XdhABC YqeB MCD conserved biosynthetic pathway that can be divided into ? XdhD (YgfM) YqeB ? four steps, according to the stable biosynthetic interme- Sulfite oxidase family diates which can be isolated and were intensively studied Sulfite oxidase YedYZ — Mo-MPT in Escherichia coli (Figure 2)[21]: the synthesis of cyclic pyranopterin monophosphate (cPMP) [22], conversion of YcbX — ? ? cPMP into MPT by introduction of two sulfur atoms [23], ? YiiM — ? and insertion of molybdate to form Moco [24].
Recommended publications
  • The Influence of Vitamin B12on the Content, Distribution and in Vivo
    The Influence of Vitamin B12on the Content, Distribution and in Vivo Synthesis of Thiamine Pyrophosphate, Flavin Adenine Dinucleotide and Pyridine Nucleotides in Rat Liver1 URMILA MARFATIA, D. V. REGE, H. P. TIPNIS ANDA. SREENIVASAN Department of Chemical Technology, University of Bombay, Matunga, Bombay Apart from the well-known interrelation (FAD) and pyridine nucleotides (PN), and ships among the B vitamins, there is rea to their in vivo synthesis from the corre son to believe that folie acid and vitamin sponding administered vitamins, in the rat Downloaded from Bu may influence the functioning of other liver. Data on the distribution of these vitamins as cofactors. Thus, dietary folie cofactors in liver cells of the normal rat acid has been known to determine rat are available in the works of Goethart ('52) liver stores of coenzyme A (CoA) and and Dianzani and Dianzani Mor ('57) on adenotriphosphate (ATP) (Popp and Tot TPP, of Carruthers and Suntzeff ('54) and ter, '52; Totter, '53); a decrease in liver Dianzani ('55) on pyridine nucleotides DPN is also caused by aminopterin2 (PN) and of Schneider and Hogeboom jn.nutrition.org (Strength et al., '54). The in vivo incor (Schneider, '56) on FAD. poration of nitcotinamide into pyridino- nucleotides in rat liver is affected in a EXPERIMENTAL deficiency of vitamin B«(Nadkarni et al., Young, male Wistar rats weighing ap '57). Low blood level of citrovorum factor proximately 100 gm each were used. The by guest on April 19, 2011 in the hyperthyroid, vitamin Bi2-deficient animals, housed individually in raised rat is corrected by administration of vita mesh-bottom cages, were initially depleted min B«(Pfander et al., '52).
    [Show full text]
  • Roles of Vitamin Metabolizing Genes in Multidrug-Resistant Plasmids of Superbugs
    bioRxiv preprint doi: https://doi.org/10.1101/285403; this version posted March 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Roles of Vitamin Metabolizing Genes in Multidrug-Resistant Plasmids of Superbugs Asit Kumar Chakraborty, Genetic Engineering Laboratory, Department of Biotechnology & Biochemistry, Oriental Institute of Science & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India. Abstract Superbug crisis has rocked this world with million deaths due to failure of potent antibiotics. Thousands mdr genes with hundreds of mutant isomers are generated. Small integrons and R-plasmids have combined with F'-plasmids creating a space for >10-20 of mdr genes that inactivate antibiotics in different mechanisms. Mdr genes are created to save bacteria from antibiotics because gut microbiota synthesize >20 vitamins and complex bio-molecules needed for >30000 biochemical reactions of human metabolosome. In other words, mdr gene creation is protected from both sides, intestinal luminal cells and gut bacteria in a tight symbiotic signalling system. We have proposed, to avert the crisis all vitamin metabolizing genes will be acquired in MDR- plasmids if we continue oral antibiotics therapy. Therefore, we have checked the plasmid databases and have detected thiamine, riboflavin, folate, cobalamine and biotin metabolizing enzymes in MDR plasmids. Thus vit genes may mobilise recently into MDR-plasmids and are likely essential for gut microbiota protection. Analysis found that cob and thi genes are abundant and likely very essential than other vit genes.
    [Show full text]
  • Coenzymes and Prosthetic Groups Nomenclature
    Coenzymes and prosthetic groups Nomenclature • Cofactor: nonprotein component of enzymes • Cofactor - a co-catalyst required for enzyme activity • Coenzyme - a dissociable cofactor, usually organic • Prosthetic group - non-dissociable cofactor • Vitamin - a required micro-nutrient (organism cannot synthesize adequate quantities for normal health - may vary during life-cycle). – water soluble - not stored, generally no problem with overdose – lipid soluble - stored, often toxic with overdose. • Apoenzyme - enzyme lacking cofactor (inactive) • Holoenzyme - enzyme with cofactors (active) Vitamins are precursors of cofactors Why cofactors? Adenine Nucleotide Coenzymes All use the adenine nucleotide group solely for binding to the enzyme! • pyridine dinucleotides (NADH, NADPH) • flavin mono- and dinucleotides (FMN, FADH) • coenzyme A Nucleotide triphosphates • ATP hydrolysis – resonance stabilizes products – reactants cannot be resonance stabilized because of competition with adjacent bridging anhydrides – charge density greater on reactants than products Coenzyme A • Activation of acyl groups for transfer by nucleophilic attack • activation of the alpha- hydrogen of the acyl group for abstraction as a proton • Both these functions are mediated by the reactive -SH group on CoA, which forms thioesters Coenzyme A Nicotinic Acid/Nicotinamide Coenzymes • These coenzymes are two-electron carriers • They transfer hydride anion (H-) to and from substrates • Two important coenzymes in this class: • Nicotinamide adenine dinucleotide (NAD+) • Nicotinamide
    [Show full text]
  • Effect of Thiamine Pyrophosphate on Ischemia-Reperfusion Induced Oxidative Damage in Rat Kidney
    Research Article Effect of thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat kidney Durdu Altuner, Nihal Cetin, Bahadir Suleyman, Zeynep Aslan1, Ahmet Hacimuftuoglu1, Mine Gulaboglu2, Neslihan Isaoglu3, Ismail Demiryilmaz4, Halis Suleyman ABSTRACT Department of Pharmacology, Objectives: The biochemical effects of thiamine pyrophosphate on ischemia-reperfusion Faculty of Medicine, Recep Tayyip (IR) induced oxidative damage and DNA mutation in rat kidney tissue were investigated, Erdogan University, Rize, and compared to thiamine. 1 Department of Pharmacology, Materials and Methods: Rats were divided into four groups: Renal ischemia-reperfusion Faculty of Medicine and (RIR); thiamine pyrophosphate + RIR (TPRIR); thiamine + RIR (TRIR); and sham group (SG). 2Biochemistry, Faculty of Pharmacy, Results: The results of biochemical experiments have shown that malondialdehyde (MDA) Ataturk University, Erzurum, 3Department of Anesthesia, Nene levels in rat kidney tissue after TRIR and TPRIR treatment were 7.2 ± 0.5 (P > 0.05) and 3.3 Hatun Obstetrics and Gynecology ± 0.3 (P < 0.0001) µmol/g protein, respectively. The MDA levels in the SG rat kidney tissue Hospital, Erzurum, 4Department of and in RIR group were 3.6 ± 0.2 (P < 0.0001) and 7.6 ± 0.6 µmol/g protein, respectively. General Surgery, Ibni Sina Hospital, Total glutathione (tGSH) levels in TRIR, TPRIR, SG, and RIR animal groups were 2.2 ± 0.3 Kayseri, Turkey (P > 0.05), 5.8 ± 0.4 (P < 0.0001), 6.2 ± 0.2 (P < 0.0001), and 1.7 ± 0.2 nmol/g protein, respectively. In the TRIR, TPRIR, SG, and RIR animal groups; 8-hydroxyguanine (8-OHGua)/ Received: 05-06-2012 Gua levels, which indicate mutagenic DNA, were 1.75 ± 0.12 (P > 0.05), 0.93 ± 0.1 (P < Revised: 03-02-2013 0.0001), 0.85 ± 0.08 (P < 0.0001), and 1.93 ± 0.24 pmol/L, respectively.
    [Show full text]
  • Vitamins and Minerals for Energy, Fatigue and Cognition: a Narrative Review of the Biochemical and Clinical Evidence
    nutrients Review Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence Anne-Laure Tardy 1,*, Etienne Pouteau 1 , Daniel Marquez 2, Cansu Yilmaz 3 and Andrew Scholey 4 1 Sanofi Consumer Healthcare, Global Medical Nutritionals, 94250 Gentilly, France; Etienne.Pouteau@sanofi.com 2 Sanofi Consumer Healthcare, 04000 México City, Mexico; Daniel.Marquez@sanofi.com 3 Sanofi Consumer Healthcare, 34394 Be¸sikta¸sIstanbul, Turkey; cansu.yilmaz@sanofi.com 4 Centre for Human Psychopharmacology, Swinburne University, Victoria, VIC 3122, Australia; [email protected] * Correspondence: Anne-Laure.Tardy@sanofi.com Received: 23 December 2019; Accepted: 11 January 2020; Published: 16 January 2020 Abstract: Vitamins and minerals are essential to humans as they play essential roles in a variety of basic metabolic pathways that support fundamental cellular functions. In particular, their involvement in energy-yielding metabolism, DNA synthesis, oxygen transport, and neuronal functions makes them critical for brain and muscular function. These, in turn, translate into effects on cognitive and psychological processes, including mental and physical fatigue. This review is focused on B vitamins (B1, B2, B3, B5, B6, B8, B9 and B12), vitamin C, iron, magnesium and zinc, which have recognized roles in these outcomes. It summarizes the biochemical bases and actions of these micronutrients at both the molecular and cellular levels and connects them with cognitive and psychological symptoms, as well as manifestations of fatigue that may occur when status or supplies of these micronutrients are not adequate. Keywords: B vitamins; vitamin C; iron; magnesium; zinc; energy production; mental and physical fatigue; anemia; cognition; mood.
    [Show full text]
  • 1,2,3,5,6,8,10,11,16,20,21 Citric Acid Cycle Reactions
    Overview of the citric acid cycle, AKA the krebs cycle AKA tricarboxylic acid AKA TCA cycle Suggested problems from the end of chapter 19: 1,2,3,5,6,8,10,11,16,20,21 Glycogen is broken down into glucose. The reactions of glycolysis result in pyruvate, which is then fed into the citric acid cycle in the form of acetyl CoA. The products of the citric acid cycles are 2 CO2, 3 NADH, 1 FADH2, and 1 ATP or GTP. After pyruvate is generated, it is transported into the mitochondrion, an organelle that contains the citric acid cycle enzymes and the oxidative phosphorylation enzymes. In E. coli, where there are neither mitochondria nor other organelles, these enzymes also seem to be concentrated in certain regions in the cell. Citric acid cycle reactions Overall, there are 8 reactions that result in oxidation of the metabolic fuel. This results in reduction of NAD+ and FAD. NADH and FADH2 will transfer their electrons to oxygen during oxidative phosphorylation. •In 1936 Carl Martius and Franz Knoop showed that citrate can be formed non-enzymaticly from Oxaloacetate and pyruvate. •In 1937 Hans Krebs used this information for biochemical experiments that resulted in his suggestion that citrate is processed in an ongoing circle, into which pyruvate is “fed.” •In 1951 it was shown that it was acetyl Coenzyme-A that condenses with oxaloacetate to form citrate. 1 The pre-citric acid reaction- pyruvate dehydrogenase Pyruvate dehydrogenase is a multi-subunit complex, containing three enzymes that associate non-covalently and catalyze 5 reaction. The enzymes are: (E1) pyruvate dehydrogenase (E2) dihydrolipoyl transacetylase (E3) dihydrolipoyl dehydrogenase What are the advantages for arranging enzymes in complexes? E.
    [Show full text]
  • Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids
    International Journal of Molecular Sciences Article Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids Stefan R. Marsden, Duncan G. G. McMillan and Ulf Hanefeld * Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629HZ Delft, The Netherlands; [email protected] (S.R.M.); [email protected] (D.G.G.M.) * Correspondence: [email protected] Received: 12 October 2020; Accepted: 12 November 2020; Published: 16 November 2020 Abstract: The synthetic properties of the Thiamine diphosphate (ThDP)-dependent pyruvate dehydrogenase E1 subunit from Escherichia coli (EcPDH E1) was assessed for carboligation reactions with aliphatic ketoacids. Due to its role in metabolism, EcPDH E1 was previously characterised with respect to its biochemical properties, but it was never applied for synthetic purposes. Here, we show that EcPDH E1 is a promising biocatalyst for the production of chiral α-hydroxyketones. WT EcPDH E1 shows a 180–250-fold higher catalytic efficiency towards 2-oxobutyrate or pyruvate, respectively, in comparison to engineered transketolase variants from Geobacillus stearothermophilus (TKGST). Its broad active site cleft allows for the efficient conversion of both (R)- and (S)-configured α-hydroxyaldehydes, next to linear and branched aliphatic aldehydes as acceptor substrates under kinetically controlled conditions. The alternate, thermodynamically controlled self-reaction of aliphatic aldehydes was shown to be limited to low levels of conversion, which we propose to be due to their large hydration constants. Additionally, the thermodynamically controlled approach was demonstrated to suffer from a loss of stereoselectivity, which makes it unfeasible for aliphatic substrates. Keywords: Thiamine diphosphate; transketolase; C-C bond formation; kinetic control; acyloins 1.
    [Show full text]
  • Linking Vitamin B1 with Cancer Cell Metabolism Jason a Zastre*, Rebecca L Sweet, Bradley S Hanberry and Star Ye
    Zastre et al. Cancer & Metabolism 2013, 1:16 http://www.cancerandmetabolism.com/content/1/1/16 Cancer & Metabolism REVIEW Open Access Linking vitamin B1 with cancer cell metabolism Jason A Zastre*, Rebecca L Sweet, Bradley S Hanberry and Star Ye Abstract The resurgence of interest in cancer metabolism has linked alterations in the regulation and exploitation of metabolic pathways with an anabolic phenotype that increases biomass production for the replication of new daughter cells. To support the increase in the metabolic rate of cancer cells, a coordinated increase in the supply of nutrients, such as glucose and micronutrients functioning as enzyme cofactors is required. The majority of co- enzymes are water-soluble vitamins such as niacin, folic acid, pantothenic acid, pyridoxine, biotin, riboflavin and thiamine (Vitamin B1). Continuous dietary intake of these micronutrients is essential for maintaining normal health. How cancer cells adaptively regulate cellular homeostasis of cofactors and how they can regulate expression and function of metabolic enzymes in cancer is underappreciated. Exploitation of cofactor-dependent metabolic pathways with the advent of anti-folates highlights the potential vulnerabilities and importance of vitamins in cancer biology. Vitamin supplementation products are easily accessible and patients often perceive them as safe and beneficial without full knowledge of their effects. Thus, understanding the significance of enzyme cofactors in cancer cell metabolism will provide for important dietary strategies and new molecular targets to reduce disease progression. Recent studies have demonstrated the significance of thiamine-dependent enzymes in cancer cell metabolism. Therefore, this review discusses the current knowledge in the alterations in thiamine availability, homeostasis, and exploitation of thiamine-dependent pathways by cancer cells.
    [Show full text]
  • Adenosyl Radical: Reagent and Catalyst in Enzyme Reactions E
    DOI: 10.1002/cbic.200900777 Adenosyl Radical: Reagent and Catalyst in Enzyme Reactions E. Neil G. Marsh,*[a] Dustin P. Patterson,[a] and Lei Li*[b] 604 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemBioChem 2010, 11, 604 – 621 Adenosine is undoubtedly an ancient biological molecule that confined to a rather narrow repertoire of rearrangement reac- is a component of many enzyme cofactors: ATP, FADH, tions involving 1,2-hydrogen atom migrations; nevertheless, NAD(P)H, and coenzyme A, to name but a few, and, of course, mechanistic insights gained from studying these enzymes have of RNA. Here we present an overview of the role of adenosine proved extremely valuable in understanding how enzymes in its most reactive form: as an organic radical formed either generate and control highly reactive free radical intermediates. by homolytic cleavage of adenosylcobalamin (coenzyme B12, In contrast, there has been a recent explosion in the number AdoCbl) or by single-electron reduction of S-adenosylmethio- of radical-AdoMet enzymes discovered that catalyze a remarka- nine (AdoMet) complexed to an iron–sulfur cluster. Although bly wide range of chemically challenging reactions; here there many of the enzymes we discuss are newly discovered, adeno- is much still to learn about their mechanisms. Although all the sine’s role as a radical cofactor most likely arose very early in radical-AdoMet enzymes so far characterized come from anae- evolution, before the advent of photosynthesis and the pro- robically growing microbes and are very oxygen sensitive, duction of molecular oxygen, which rapidly inactivates many there is tantalizing evidence that some of these enzymes radical enzymes.
    [Show full text]
  • ITD 5135 Cellular and Systems Processes
    Biology of Cells and Tissues Vadivel Ganapathy, Ph.D. 5B106 [email protected] Fructose and Galactose metabolism Fructose Fructose is important in humans since it represents 50% of the carbohydrate in sucrose. 1 Fructose --- Fructose-1-phosphate ATP 2 Fructose-1-phosphate --- Dihydroxyacetone phosphate + Glyceraldehyde 3 Glyceraldehyde --- Glyceraldehyde-3-phosphate Reaction #1: Fructokinase Reaction #2: Fructose-1-phosphate aldolase Reaction #3: Triose kinase Dihydroxyacetone phosphate and glyceraldehyde-3-phosphate are intermediates in glycolysis. Galactose Galactose is a component of lactose (milk sugar). 1 Galactose --- Galactose-1-phosphate 2 Galactose-1-phosphate + UDP-glucose ---Glucose-1-phosphate + UDG-galactose 3 UDP-galactose --- UDP-glucose 4 Glucose-1-phosphate --- Glucose-6-phosphate (an intermediate in glycolysis) Reaction #1: Galactokinase Reaction #2: Galactose-1-phosphate uridyl transferase Reaction #3: UDP-galactose 4-epimerase Reaction #4: Phosphoglucomutase Hereditary fructose intolerance 1. Genetic disease associated with a deficiency in liver fructose 1-phosphate aldolase. 2. Ingestion of fructose results in the accumulation of fructose 1-phosphate. 3. This depletes the Pi and ATP in the liver. 4. Fructose 1-phosphate stimulates glucokinase in liver and pancreatic β cells by removing the inhibitory protein. This causes increased uptake of glucose by these tissues and also increased insulin secretion by β cells. The result is hypoglycemia. 5. The disease is also associated with liver disease (jaundice) and renal tubular damage (Fanconi syndrome). 6. Decreased Pi levels leads to increased breakdown of adenine nucleotides (AMP, ADP), causing hyperuricemia (gout). 7. No cataract (Fructose, being a ketose, is not a substrate for aldose reductase). 8. Treated by restricting dietary intake of fructose, sucrose, fruit juices and honey.
    [Show full text]
  • Food Supplements: Permitted Vitamins and Minerals
    Food Supplements List of Vitamins and Minerals which may be used in the manufacture of food supplements in the EU Digital ISBN 978 0 7504 7646 1 © Crown copyright 2012 WG15822 Important note This document was correct at the time of publishing. The lists of vitamins and minerals permitted for use in food supplements is subject to change. Please ensure you check the European Commission’s website for any amendments to the list (Click here) Vitamins and minerals which may be used in the manufacture of food supplements as permitted by Directive 2002/46/EC relating to food supplements1 Vitamins Unit of Minerals Unit of measurement measurement Vitamin A μg RE Calcium mg Vitamin D μg Magnesium mg Vitamin E mg α-TE Iron mg Vitamin K μg Copper μg Vitamin B1 mg Iodine μg Vitamin B2 mg Zinc mg Niacin mg NE Manganese mg Pantothenic acid mg Sodium mg Vitamin B6 mg Potassium mg Folic acid2 μg Selenium μg Vitamin B12 μg Chromium μg Biotin μg Molybdenum μg Vitamin C mg Fluoride mg Chloride mg Phosphorus mg Boron mg Silicon mg 1 As amended by Regulation (EC) No. 1137/2008 (OJ L311, 21.11.2008, p.1; Regulation (EC) No. 1170/2009 (OJ L314, 1.12.2009, p.36); and Regulation (EC) No. 1161/2011 (OJ L296, 15.11.2011, p.29) 2 Folic acid is the term included in Annex I of Commission Directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions for nutrition labelling purposes and covers all forms of folates." Vitamins VITAMIN
    [Show full text]
  • Thiamine Pyrophosphate
    CO-ENZYMES Coenzymes are organic non-protein molecules that bind with the protein molecule (apoenzyme) to form the active enzyme (holoenzyme). » Coenzymes are small molecules. » They cannot catalyze a reaction by themselves but they can help enzymes to do so. Example: Thiamine pyrophosphate, FAD, pantothenic acid etc. Salient features of coenzyme: Coenzymes are heat stable. They are low-molecular weight substances. The coenzymes combine loosely with the enzyme molecules and so, the coenzyme can be separated easily by dialysis. When the reaction is completed, the coenzyme is released from the apo-enzyme, and goes to some other reaction site. Thiamine pyrophosphate: Thiamine pyrophosphate (TPP), or thiamine diphosphate (ThDP), is a thiamine derivative, is also known as vitamin B1. Biological Function of Thiamine pyrophosphate: It maintains: The normal function of the heart; Normal carbohydrate and energy-yielding metabolism; The normal function of the nervous system; Normal neurological development and function; Normal psychological functions. Flavin Coenzymes: Flavin mono nucleotide (FMN) Flavin adenine di nucleotide (FMD) Flavin is the common name for a group of organic compounds based on pteridine,. The biochemical source is the riboflavin. It is commonly know as Vitamin B2. The flavin often attached with an adenosine diphosphate to form flavin adenine dinucleotide (FAD),and, in other circumstances, is found as flavin mononucleotide (FMN). Biological Functions and Importance: Normal energy-yielding metabolism; Normal metabolism of iron in the body; The maintenance of normal skin and mucous membranes; The maintenance of normal red blood cells; The maintenance of normal vision; The maintenance of the normal function of the nervous system. TH4 or Tetrahydrofolic acid: Tetrahydrofolic acid, or tetrahydrofolate, is a folic acid derivative.
    [Show full text]