Indicates That Precautions Are to Be Taken at All Times and in All Situations

Total Page:16

File Type:pdf, Size:1020Kb

Indicates That Precautions Are to Be Taken at All Times and in All Situations FRANCIS HOWELL SCHOOL DISTRICT UNIVERSAL PRECAUTIONS AND Severe Allergy Awareness Revised May, 2012 Universal Precautions The strategy of Universal Precautions was developed in the mid-1980’s as a means of preventing the transmission of blood borne pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus (HBV). Although Universal Precautions were initially designed for use in hospitals and clinics, they are applicable in any workplace setting, including schools, where exposure to blood or blood-contaminated materials could potentially occur. The term “universal” indicates that precautions are to be taken at all times and in all situations. Universal Precautions involve the following measures: 1. Appropriate barrier precautions should be used to avoid skin or mucous membrane contact with any of the body fluids. (blood, urine, feces, mucous, saliva). Such barrier precautions can, based on the given situation, include the use of standard medical vinyl or latex gloves along with protective eyewear or masks. If potential contact with a significant amount of blood is anticipated, latex gloves are preferred. These items should always be available and readily accessible. 2. Hands and other skin surfaces should be washed immediately and thoroughly if contaminated. Hands should be washed immediately after gloves are removed. 3. If any body fluids come in contact with the mucous membrane surfaces of the mouth or nose, the area should be vigorously flushed with water. If the mucous membrane surfaces of the eye are contaminated, they should be irrigated with clear water, or saline solution or sterile irrigants designed for the purpose. 4. Precautions should be taken to avoid injury with sharp instruments contaminated with blood. Sharp items such as x-acto knives should be placed in puncture resistant, leak proof containers for disposal. 5. Persons providing health care who have excessive oozing fluids from skin lesions or weeping dermatitis should refrain from all direct student care, and from handling student-care equipment, until the condition resolves. GUIDELINES FOR HANDLING BODY SUBSTANCES IN SCHOOLS The following guidelines are meant to provide simple effective precautions against transmission of disease for all persons, including pregnant women, potentially exposed to blood or body fluids of any student. No distinction is made between body substances from persons with a known disease or those from persons without symptoms or with an undiagnosed disease. DOES CONTACT WITH A BODY SUBSTANCE PRESENT A RISK? The body substances of all persons should be considered to contain potentially infectious agents (germs). The term “body substances” includes, but not limited to, blood, urine, semen, mucous, drainage from wounds, and saliva. Contact with body substances presents a risk of infection with a variety of germs. In general, however, the risk is very low and dependent on a variety of factors including the type of substance with which contact is made and the type of contact made with it. It must be emphasized that with the exception of blood, which is normally sterile, the body substances with which one may come in contact usually contain many organisms, some of which may cause disease. Furthermore, individuals who have no symptoms of illness can carry many germs. These individuals may be a various stages of infections: incubating disease, mildly infected without symptoms, or chronic carriers of certain infectious agents including the AIDS and hepatitis viruses. In fact, transmission of communicable disease is more likely to occur from contact with infected body substances of unrecognized carriers than from contact with substances from recognized individuals because simple precautions are not always followed. WHAT SHOULD BE DONE WHEN HUMAN-TO-HUMAN BITE/SCRATCH OCCURS? If the skin is unbroken, wash the area with soap and water and rinse the area with hydrogen peroxide. If the skin is broken, wash the area with soap and water, rinse with hydrogen peroxide and apply antibiotic ointment and a dressing. All human-to-human bites and scratches are to be reported immediately to the health office for documentation. For a bite or scratch that opens the skin, the employee may request follow-up care with Workman’s Compensation at district expense. WHAT SHOULD BE DONE IF SKIN CONTACT OCCURS? In many instances, unanticipated skin contacts with body substances may occur in situations where gloves may not be immediately available, such as when wiping a runny nose, applying pressure to a bleeding injury outside the classroom, or helping a child in the bathroom. In these instances, hands and other affected skin areas of all exposed persons should be routinely washed with soap and water after direct contact has ceased. Clothing and other non-disposable items, such as towels, should be rinsed and placed in plastic bags prior to laundering them. If presoaking is required to remove stains, use gloves while rinsing or soaking items prior to bagging. Clothes should be sent home for washing with appropriate directions to parents. Contaminated disposable items such as tissues, paper towels, diapers, should be handled with disposable gloves and disposed of in a plastic bag. HOW SHOULD SPILLED BODY SUBSTANCES BE REMOVED FROM THE ENVIROMENT? Each school has standard procedures already in place for removing body substances. These procedures should be reviewed to determine if appropriate cleaning and disinfection steps have been included. All schools stock sanitary absorbent agents specifically intended for cleaning body substance spills. Disposable gloves should be worn when using these agents. The dry material is applied to the area, left for a few minutes to absorb the fluid, and then vacuumed or swept up. The vacuum bag or sweepings should be disposed of in a plastic bag. Broom and dustpan should be cleaned in a disinfectant. No special handling is required for vacuum equipment. Area should be scrubbed with a disinfectant. INFECTION CONTROL PROCEDURES FOR SCHOOLS Having direct contact with body fluids of another person can potentially provide the means that can transmit infection. Some of the diseases that can result are: Body Fluid Diseases Spread by Contact with this Body Fluid Eye Discharge Conjunctivitis (Pink Eye) Nose or Throat Drainage Colds and Influenza, Strep Blood Hepatitis B, HIV disease Feces Hepatitis A, Shigellosis, Giardiasis Urine CMV infection It is important to remember that any person could potentially have disease; having organisms in their body fluids, even if they have no signs or symptoms of illness. Consequently, the following recommendations should be followed in all situations and not just those involving an individual known to have an infectious disease. In the school setting, it is recommended that reasonable steps be taken to prevent individuals from having direct skin or mucous membrane contact with any body fluid from another person. Specifically, direct contact should be avoided with the following: 1. Blood 2. All other body fluids, secretions, and excretions regardless of whether or not they contain visible blood 3. Non-intact skin (moist skin sores, ulcers, open skin cuts) 4. Mucous membranes (eyes, inside of nose and mouth) If hands or other skin surfaces are contaminated with body fluids from another person, washing with soap and water should take place as soon as possible. In general, standard medical vinyl or latex gloves should be worn whenever the possibility of direct contact with any body substance from another person is anticipated. Gloves should be available and easily accessible in any setting where contact with body fluids could take place. Hands should be washed immediately after removal of gloves. Pocket masks or other devices for mouth-to-mouth resuscitation should be available. RECOMMENDATIONS FOR INFECTION CONTROL IN THE CLASSROOM 1. Hand washing technique taught to staff and students. 2. Adequate hand washing facilities: running water, liquid soap and paper towels. 3. Time provided for students and staff to wash hands after toileting. 4. Tissue available in all classrooms. 5. All waste baskets lined with plastic liners. Covered containers with plastic bags provided in Health Office and any other areas likely to have disposable items contaminated with body fluids. Never reuse plastic bags. 6. Students and staff should have all lesions and cuts covered with a bandage. 7. All potentially contaminated areas should be sanitized at least once daily. If surfaces are visibly soiled, wash with soap and water first, then sanitize. Liquid soap dispensers should be sanitized daily. 8. Mop water must be changed after a body substance clean up. Mops must be hung up after sanitizing. Mops and dirty water should not be left standing. 9. Cleaning sponges should not be used in the classroom. 10. Disposable dishes should be used in the classroom. 11. ANIMALS: Guidelines should be in place that recognize animals carry and transfer diseases to humans. a. Keep animals in closed cages that have floors. Do not allow them to roam freely in the classroom. b. If the animal has symptoms of illness, such as diarrhea, drainage or crusting of the eyes or ears, or hair loss, it should be examined by a veterinarian. c. All litter boxes should be placed within the animal’s cage so that fecal matter does not come in contact with the classroom floor. d. If a student is assigned to clean litter box, he/she must wear plastic gloves and be supervised. Stress the importance of this. e. Any bite or scratch by an animal must be washed thoroughly with soap and water. Soap kills the rabies virus. All bites must be reported to the Health Office. 12. SHARPS: broken glass, razor blades, etc. a. DO NOT use hands to pick up broken glass, use brush and dustpan. b. Always place broken glass and sharp objects in a hard sided sealed container before placing it in the trash. HEPATITIS A PREVENTION GUIDELINES Hepatitis A, or viral hepatitis, is a form of infectious hepatitis, a liver disease.
Recommended publications
  • OSU Infectious Diseases Response Protocol
    DocuSign Envelope ID: D09C67E0-CB87-454C-8430-DBD2BA83D21A Student Health Services 108 SW Memorial Place, Plageman Bldg Corvallis, OR 97331 P 541-737-9355 | F 541-737-9665 Studenthealth.oregonstate.edu OSU Infectious Diseases Response Protocol Oregon State University Student Health Services 108 SW Memorial Place Plageman Building Corvallis, OR 97331-5801 Revised July 2019 Oregon State University Infectious Diseases Response Team Student Health Services (SHS) Office of Student Life Department of Public Safety (DPS) Emergency Management Facilities Services ABM (Custodial Contract Services) Division of International Programs INTO OSU Risk Management Environmental Health and Safety (EHS) Center for Fraternity and Sorority Life (CFSL) University Relations and Marketing (URM) University Housing and Dining Services (UHDS) Counseling and Psychological Services (CAPS) Summer Session Enrollment Management-Office of Admissions Department of Recreational Sports Academic Advising Athletics Department Benton County Health Services (BCHS) Good Samaritan Regional Medical Center (GSRMC) Corvallis Fire Department (Emergency Medical Services) DocuSign Envelope ID: D09C67E0-CB87-454C-8430-DBD2BA83D21A Page 2 of 47 Promulgation, Approval, and Implementation The following is the Infectious Disease Response Protocol (IDRP) for Oregon State University (OSU). It identifies strategies and responsibilities for the prevention of and implementation of an emergency response to communicable diseases in the OSU community. This plan applies to all visitors, staff, students, volunteers or others working in OSU buildings. This plan has been approved and adopted by the OSU Infectious Disease Response Team (IDRT) and Benton County Health Services. It will be revised and updated as required. This plan supersedes any previous plan. It is understood that emergency plans exist for co-located agencies/building occupants (federal, state); where their plans are absent in instructions, this plan will be in effect.
    [Show full text]
  • Emergency Preparedness for COVID-19: Experience from One District General Hospital in Wuhan
    4 Editorial Page 1 of 4 Emergency preparedness for COVID-19: experience from one district general hospital in Wuhan Yuetian Yu1#, Chunhui Xu2#, Cheng Zhu3, Qingyun Li4, Erzhen Chen3 1Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; 2Clinical Laboratory Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; 3Department of Emergency Medicine, 4Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China #These authors contributed equally to this work. Correspondence to: Erzhen Chen. Department of Emergency Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China. Email: [email protected]. Received: 28 June 2020; Accepted: 04 September 2020; Published: 30 October 2020. doi: 10.21037/jeccm-20-97 View this article at: http://dx.doi.org/10.21037/jeccm-20-97 As a newly infectious disease, COVID-19 was first reported admitted on January 27th. The number of patients admitted at the end of December 2019 and now has become a global had reached 600 in the next three days and 15% of them pandemic (1). By August 20th, a total of 22,213,869 cases were critically ill who need organ support, especially the were confirmed in over 200 countries, including 781,677 respiratory support. However, insufficient oxygen supply death cases (2), which resulted in a challenge of medical and lack of ventilators brought great obstacles for the care system. During the first 2 months of 2020, the same rescue of these patients.
    [Show full text]
  • Early History of Infectious Disease 
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CHAPTER ONE EARLY HISTORY OF INFECTIOUS 1 DISEASE Kenrad E. Nelson, Carolyn F. Williams Epidemics of infectious diseases have been documented throughout history. In ancient Greece and Egypt accounts describe epidemics of smallpox, leprosy, tuberculosis, meningococcal infections, and diphtheria.1 The morbidity and mortality of infectious diseases profoundly shaped politics, commerce, and culture. In epidemics, none were spared. Smallpox likely disfigured and killed Ramses V in 1157 BCE, although his mummy has a significant head wound as well.2 At times political upheavals exasperated the spread of disease. The Spartan wars caused massive dislocation of Greeks into Athens triggering the Athens epidemic of 430–427 BCE that killed up to one half of the population of ancient Athens.3 Thucydides’ vivid descriptions of this epidemic make clear its political and cultural impact, as well as the clinical details of the epidemic.4 Several modern epidemiologists have hypothesized on the causative agent. Langmuir et al.,5 favor a combined influenza and toxin-producing staphylococcus epidemic, while Morrens and Chu suggest Rift Valley Fever.6 A third researcher, Holladay believes the agent no longer exists.7 From the earliest times, man has sought to understand the natural forces and risk factors affecting the patterns of illness and death in society. These theories have evolved as our understanding of the natural world has advanced, sometimes slowly, sometimes, when there are profound break- throughs, with incredible speed. Remarkably, advances in knowledge and changes in theory have not always proceeded in synchrony. Although wrong theories or knowledge have hindered advances in understanding, there are also examples of great creativity when scientists have successfully pursued their theories beyond the knowledge of the time.
    [Show full text]
  • Syphilis and Theories of Contagion Curtis V
    Syphilis and Theories of Contagion Curtis V. Smith, Doctoral Candidate Professor of Biological Sciences Kansas City Kansas Community College Abstract Syphilis provides a useful lens for peering into the history of early modern European medicine. Scholarly arguments about how diseases were transmitted long preceded certain scientific information about the etiology or cause of disease in the late 19th century. Compared to the acute and widely infectious nature of bubonic plague, which ravaged Europe in the mid-15th century, syphilis was characterized by the prolonged chronic suffering of many beginning in the early 16th century. This study reveals the historical anachronisms and the discontinuity of medical science focusing primarily on the role of Girolamo Fracastoro (1478-1553) and others who influenced contagion theory. Examination of contagion theory sheds light on perceptions about disease transmission and provides useful distinctions about descriptive symptoms and pathology. I. Introduction Treponema pallidum is a long and tightly coiled bacteria discovered to be the cause of syphilis by Schaudinn and Hoffman on March 3, 1905. The theory of contagion, or how the disease was transmitted, was vigorously debated in Europe as early as the sixteenth century. Scholarly arguments about how diseases were transmitted long preceded scientific information about the etiology or cause of disease. The intense debate about syphilis was the result of a fearsome epidemic in Europe that raged from 1495-1540. Compared to the Black Death, which had a short and sudden acute impact on large numbers of people one hundred and fifty years earlier, syphilis was characterized by the prolonged chronic suffering of many.
    [Show full text]
  • Pathology and Epidemics
    Chapter 8 Pathology and Epidemics As physicians, the Russell brothers were frequently exposed to epidemic dis- eases.1 Fevers, of great interest to eighteenth-century physicians, were thought to be diseases rather than symptoms of diseases. “The common epidemic diseases at Aleppo are Continual, Intermittent, Remittent fevers, Malignant Remittents,2 and regular and anomalous Erratic fevers to which children are liable,3 Diarrhoea, Dysentery, Pleurisy, Peripneumony,4 Quinsy,5 Rheumatism6 and Ophthalmia,7 common in Aleppo, which all return as regularly as the seasons”,8 as well as the plague – and smallpox that was “sometimes very fatal”.9 Other endemic diseases,10 many that targeted children, included measles, Chincough,11 Putrid Fevers, Petechial,12 and Scarlet Fevers. It is not surprising that the Russells focused on the prognosis, signs, symptoms and treatment of various diseases, including Cutaneous leishmaniasis, smallpox and the plague. 1 Hawgood, “Alexander Russell”, pp. 1–6; Starkey, “Contagion followed”; Aleppo Observed, pp. 164–178. 2 Aleppo2 ii: 300. i.e. typhoid. 3 SP 110/74. In a letter to a patient in Cyprus, Patrick recommended cold baths be taken in the cool of the morning, 11 October 1760. Laidlaw, British in the Levant, p. 145. 4 Respiratory diseases and pneumonia. 5 Peritonsillar abscess. 6 Alexander’s work is cited by Henry William Fuller, On rheumatism, rheumatic gout, and sciatica (London: J. Churchill, 1860), p. 419. 7 Aleppo2 ii: 299, 322. On ophthalmia, see Aleppo2 ii: 299–300. 8 Boott, John Armstrong, vol. 1, p. 114. 9 Volney, Voyage en Syrie, vol. 1, p. 362. 10 Davis, Aleppo, p.
    [Show full text]
  • Ethics of Outbreaks Position Statement. Part 1: Therapies, Treatment Limitations, and Duty to Treat
    Special Articles 03/03/2020 on wrHCvhjO7WkRUaHFQgU5sRwb2NhXz4eRzyeq5zSV0JyTxvvLn1BjMyWyV9jGZbQ5M+fMhyNPRN0Y5Otd+lOlDZzIGaRbeXm/WHXH8aZuSBvINZM4A2PR2zKFXmRAiiSR81IPmKVVUOiM4NYc0EiJEIvYMK5bRWvG by https://journals.lww.com/ccmjournal from Downloaded Downloaded Ethics of Outbreaks Position Statement. Part 1: from Therapies, Treatment Limitations, and Duty to Treat https://journals.lww.com/ccmjournal Thomas J. Papadimos, MD, MPH1,2; Evadne G. Marcolini, MD3; Mehrnaz Hadian, MD4; George E. Hardart, MD5; Nicholas Ward, MD6; Mitchell M. Levy, MD6; Stanislaw P. Stawicki, MD, MBA7; Judy E. Davidson, DNP, RN8 by wrHCvhjO7WkRUaHFQgU5sRwb2NhXz4eRzyeq5zSV0JyTxvvLn1BjMyWyV9jGZbQ5M+fMhyNPRN0Y5Otd+lOlDZzIGaRbeXm/WHXH8aZuSBvINZM4A2PR2zKFXmRAiiSR81IPmKVVUOiM4NYc0EiJEIvYMK5bRWvG Objectives: Outbreaks of disease, especially those that are the Society of Critical Care Medicine Ethics committee. The com- declared a Public Health Emergency of International Concern, mittee had representation from ethics, medical philosophy, critical present substantial ethical challenges. Here we start a discourse care, nursing, internal medicine, emergency medicine, pediatrics, (with a continuation of the dialogue in Ethics of Outbreaks Position anesthesiology, surgery, and members with international health Statement. Part 2: Family-Centered Care) concerning the ethics and military experience. of the provision of medical care, research challenges and behav- Setting: Provision of therapies for patients who are critically ill or iors during a Public Health Emergency of International
    [Show full text]
  • Aujesky's Disease
    EVE Man 08-041 Mair v2:Layout 1 14/08/2009 14:13 Page 163 Aujesky’s disease (pseudorabies) in the horse 163 AUJESKY’S DISEASE (PSEUDORABIES) IN THE HORSE T. S. Mair* and G. R. Pearson† Bell Equine Veterinary Clinic, Mereworth, Maidstone, Kent ME18 5GS; and †Department of Clinical Veterinary Science, School of Veterinary Science, Bristol University, Langford House, Langford, Bristol BS40 5DU, UK. Keywords: horse; pseudorabies; suid heperpesvirus-1; Aujesky’s disease Summary disease has been eradicated from many countries. Pseudorabies, caused by suid (porcine) herpesvirus- Infection results in neurological signs in piglets, 1, is an acute, contagious disease affecting primarily respiratory disease and poor growth performance in pigs, but transmission to other species including fattening pigs, and reproductive failure in sows (Van horses can occur. Pseudorabies has been reported Oirschot 2004). Older pigs usually survive the acute around the world, although it has been eradicated infection, but carry the virus in a latent form for from many countries, including the UK. The pig is their entire lives. the natural host of suid herpesvirus-1, and other species, including horses, are generally infected as a Aetiology result of close contact with pigs (aerosol spread). Suid herpesvirus-1 has the broadest range of the Species other than pigs are considered to be dead-end animal herpesviruses (Crandell 1985). Natural hosts, and they invariably die as a result of acute infections of pseudorabies have been observed in pigs, neurological disease. Natural pseudorabies infections cattle, sheep, goats, horses, dogs, cats, rodents, mink in horses have been rarely reported. Severe and wild animals.
    [Show full text]
  • Neurological Involvement in Covid-19 Infections; Pathophysiology, Presentation and Outcome
    CORE Metadata, citation and similar papers at core.ac.uk Provided by eCommons@AKU Pakistan Journal of Neurological Sciences (PJNS) Volume 15 Issue 1 Article 2 3-2020 NEUROLOGICAL INVOLVEMENT IN COVID-19 INFECTIONS; PATHOPHYSIOLOGY, PRESENTATION AND OUTCOME. Dureshahwar Kanwar Aga Khan University, Karachi Muhammad Imran Aga Khan University, Karachi Mohammad Wasay Aga Khan University, Karachi Follow this and additional works at: https://ecommons.aku.edu/pjns Part of the Neurology Commons Recommended Citation Kanwar, Dureshahwar; Imran, Muhammad; and Wasay, Mohammad (2020) "NEUROLOGICAL INVOLVEMENT IN COVID-19 INFECTIONS; PATHOPHYSIOLOGY, PRESENTATION AND OUTCOME.," Pakistan Journal of Neurological Sciences (PJNS): Vol. 15 : Iss. 1 , Article 2. Available at: https://ecommons.aku.edu/pjns/vol15/iss1/2 REVIEW ARTICLE identified as SARS CoV 2. Most of the patients in the Data from the largest case series in China found that demyelination. Infection with COVID 19 promotes hyposmia, and dysgeusia should be added to the list effectiveness of routine brain MRI to guide treatment COVID 19 is still unknown. The risk of contamination children.31 The EEG findings although are non-specific but this remains to be seen in COVID-19. NEUROLOGICAL INVOLVEMENT IN COVID-19 outbreak reported a link to the Huanan South China 87% of confirmed cases were aged 30 to 79 years, 1% atherosclerosis, inflammation and local thrombosis in of COVID-19 screening symptoms and urged selection is uncertain.22 remains high. A non-contrast CT Head to exclude acute may show diffuse
    [Show full text]
  • Authenticated PDF Version
    DEPARTMENT OF HEALTH AND SOCIAL SERVICES DIVISION OF PUBLIC HEALTH HEALTH PROMOTION AND DISEASE PREVENTION Statutory Authority: 16 Delaware Code, Sections 122(3)a. and 707 (16 Del.C. §§122(3)a. & 707) 16 DE Admin. Code 4202 FINAL ORDER 4202 Control of Communicable and Other Disease Conditions NATURE OF THE PROCEEDINGS: Delaware Health and Social Services (“DHSS”) initiated proceedings to adopt the State of Delaware Regulations Governing Control of Communicable and Other Disease Conditions. The DHSS proceedings to adopt regulations were initiated pursuant to 29 Delaware Code Chapter 101 and authority as prescribed by 16 Delaware Code, subsections 122(3)(a) and 707. On March 1, 2019 (Volume 22, Issue 9), DHSS published in the Delaware Register of Regulations its notice of proposed regulations, pursuant to 29 Del.C. §10115. It requested that written materials and suggestions from the public concerning the proposed regulations be delivered to DHSS by April 5, 2019, after which time DHSS would review information, factual evidence and public comment to the said proposed regulations. No written comments were received during the public comment period. FINDINGS OF FACT: No changes were made to the regulations since publication as proposed. The Department finds that the proposed regulations, as set forth in the attached copy should be adopted in the best interest of the general public of the State of Delaware. THEREFORE, IT IS ORDERED, that the proposed State of Delaware Regulations Governing Control of Communicable and Other Disease Conditions is adopted and shall become effective June 11, 2019, after publication of the final regulation in the Delaware Register of Regulations.
    [Show full text]
  • An Official American Thoracic Society Policy Statement: Managing Conscientious Objections in Intensive Care Medicine
    AMERICAN THORACIC SOCIETY DOCUMENTS An Official American Thoracic Society Policy Statement: Managing Conscientious Objections in Intensive Care Medicine Mithya Lewis-Newby, Mark Wicclair, Thaddeus Pope, Cynda Rushton, Farr Curlin, Douglas Diekema, Debbie Durrer, William Ehlenbach, Wanda Gibson-Scipio, Bradford Glavan, Rabbi Levi Langer, Constantine Manthous, Cecile Rose, Anthony Scardella, Hasan Shanawani, Mark D. Siegel, Scott D. Halpern, Robert D. Truog, and Douglas B. White; on behalf of the ATS Ethics and Conflict of Interest Committee THIS OFFICIAL POLICY STATEMENT OF THE AMERICAN THORACIC SOCIETY (ATS) WAS APPROVED BY THE ATS BOARD OF DIRECTORS,OCTOBER 2014 Rationale: Intensive care unit (ICU) clinicians sometimes have accommodating COs should be considered a “shield” to protect a conscientious objection (CO) to providing or disclosing individual clinicians’ moral integrity rather than as a “sword” information about a legal, professionally accepted, and otherwise to impose clinicians’ judgments on patients. The committee available medical service. There is little guidance about how to recommends that: (1) COs in ICUs be managed through manage COs in ICUs. institutional mechanisms, (2) institutions accommodate COs, provided doing so will not impede a patient’sorsurrogate’s timely Objectives: To provide clinicians, hospital administrators, and access to medical services or information or create excessive policymakers with recommendations for managing COs in the hardships for other clinicians or the institution, (3) a clinician’sCO critical care setting. to providing potentially inappropriate or futile medical services fi fi Methods: This policy statement was developed by a should not be considered suf cient justi cation to forgo the 4 multidisciplinary expert committee using an iterative process with treatment against the objections of the patient or surrogate, and ( ) a diverse working group representing adult medicine, pediatrics, institutions promote open moral dialogue and foster a culture that nursing, patient advocacy, bioethics, philosophy, and law.
    [Show full text]
  • Consensus for Prevention and Management of Coronavirus Disease 2019 (COVID-19) for Neurologists
    Open access Guidelines Stroke Vasc Neurol: first published as 10.1136/svn-2020-000382 on 1 April 2020. Downloaded from Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists Huijuan Jin,1 Candong Hong,1 Shengcai Chen,1 Yifan Zhou,1 Yong Wang,1 Ling Mao,1 Yanan Li,1 Quanwei He,1 Man Li,1 Ying Su,1 David Wang ,2 Longde Wang,3 Bo Hu 1 To cite: Jin H, Hong C, Chen S, ABSTRACT severe infection and the patients may manifest et al. Consensus for prevention Coronavirus disease 2019 (COVID‐19) has become a as acute cerebrovascular diseases, impaired and management of coronavirus pandemic disease globally. Although COVID-19 directly disease 2019 (COVID-19) for consciousness or encephalopathy, and skel- invades lungs, it also involves the nervous system. 6 neurologists. Stroke & Vascular etal muscle injury. Therefore, patients with nervous system involvement as Neurology 2020;0. doi:10.1136/ In order to help neurologists to understand svn-2020-000382 the presenting symptoms in the early stage of infection the occurrence, development and outcome may easily be misdiagnosed and their treatment of this disease and be familiar with its diag- Received 20 March 2020 delayed. They become silent contagious sources or nosis and treatment process, we present this Revised 28 March 2020 ‘virus spreaders’. In order to help neurologists to better Accepted 31 March 2020 understand the occurrence, development and prognosis, ‘Consensus for prevention and manage- we have developed this consensus of prevention and ment of coronavirus disease 2019 (COVID- management of COVID‐19. It can also assist other 19) for neurologists’.
    [Show full text]
  • Communicable Disease Policies/Procedure
    8-16 Communicable Diseases In compliance with 10A NCAC 41A.0201, which relates to the prevention of the spread of communicable diseases/conditions, the Rowan-Salisbury School Board strives to provide a safe and orderly environment for all students and employees. The board strives to maintain a balance between the need to educate all eligible students, to protect students and employee rights, and to control communicable diseases including HIV and AIDS. The Superintendent shall develop procedures to prevent the spread of communicable diseases/conditions to student and school employees, incorporating guidelines from the NC Department of Health and Human Services. Any student or employee with a communicable disease/condition including HIV/AIDS shall not be denied enrollment or employment on the basis of the opinion of a single individual. Under certain circumstances, students or employees with communicable diseases/conditions may pose a threat to the health and safety of other students and staff. Decisions regarding educational status of students or employment of staff with communicable diseases/conditions will be made on a case-by-case basis, in accordance with this policy. Nothing in this policy is intended to grant or confer any school attendance, educational rights or employment status beyond those existing by law. This policy will be shared with school staff annually and with new employees as part of any initial orientation. Adopted 07/31/89 Amended 02/10/97 Amended 07/14/03 Amended 04/15/08 Regulation 8-16A Communicable Disease Prevention and Control Regulation Students are excluded from school in cases of communicable diseases. When a student is suspected of having a communicable disease, it is the responsibility of the parent to take the child to their family physician for diagnosis and treatment if necessary.
    [Show full text]