The Uterus and the Endometrium Common and Unusual Pathologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outcomes of in Vitro Fertilization Cycles Following Fertility-Sparing Treatment in Stage IA Endometrial Cancer
Archives of Gynecology and Obstetrics (2019) 300:975–980 https://doi.org/10.1007/s00404-019-05237-2 GYNECOLOGIC ONCOLOGY Outcomes of in vitro fertilization cycles following fertility‑sparing treatment in stage IA endometrial cancer Myung Joo Kim1 · Seung‑Ah Choe1 · Mi Kyoung Kim2 · Bo Seong Yun2 · Seok Ju Seong2 · You Shin Kim1 Received: 19 April 2019 / Accepted: 28 June 2019 / Published online: 22 August 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Purpose This study aimed to present cases involving in vitro fertilization (IVF) cycles in patients with stage IA endometrial adenocarcinoma (EC) who underwent fertility-sparing conservative treatment. Methods Twenty-two patients who underwent IVF cycles in a single fertility center between May 2005 and February 2017 after progestin treatment for stage IA EC were chosen for this study. Outcomes of IVF cycles were analyzed retrospectively. Results Women of a median age of 34 years (range 26–41 years) underwent a total of 49 embryo transfers within an aver- age of 2 months after their last progestin treatment. The clinical pregnancy rate per transfer was 26.5%, implantation rate was 16.7%, and live birth rate was 14.3%. The cumulative clinical pregnancy rate was 50% (11/22), resulting in 6 live births (27.3%) within 3 cycles of embryo transfer. The median endometrial thickness on the day of human chorionic gonadotro- pin injection in 34 fresh cycles was 9.0 mm (range 4–10 mm) in live births, 7.5 mm (range 6–9 mm) in miscarriages, and 6.0 mm (range 4–15 mm) in no pregnancy cases. -
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Ovarian Cancer and Cervical Cancer
What Every Woman Should Know About Gynecologic Cancer R. Kevin Reynolds, MD The George W. Morley Professor & Chief, Division of Gyn Oncology University of Michigan Ann Arbor, MI What is gynecologic cancer? Cancer is a disease where cells grow and spread without control. Gynecologic cancers begin in the female reproductive organs. The most common gynecologic cancers are endometrial cancer, ovarian cancer and cervical cancer. Less common gynecologic cancers involve vulva, Fallopian tube, uterine wall (sarcoma), vagina, and placenta (pregnancy tissue: molar pregnancy). Ovary Uterus Endometrium Cervix Vagina Vulva What causes endometrial cancer? Endometrial cancer is the most common gynecologic cancer: one out of every 40 women will develop endometrial cancer. It is caused by too much estrogen, a hormone normally present in women. The most common cause of the excess estrogen is being overweight: fat cells actually produce estrogen. Another cause of excess estrogen is medication such as tamoxifen (often prescribed for breast cancer treatment) or some forms of prescribed estrogen hormone therapy (unopposed estrogen). How is endometrial cancer detected? Almost all endometrial cancer is detected when a woman notices vaginal bleeding after her menopause or irregular bleeding before her menopause. If bleeding occurs, a woman should contact her doctor so that appropriate testing can be performed. This usually includes an endometrial biopsy, a brief, slightly crampy test, performed in the office. Fortunately, most endometrial cancers are detected before spread to other parts of the body occurs Is endometrial cancer treatable? Yes! Most women with endometrial cancer will undergo surgery including hysterectomy (removal of the uterus) in addition to removal of ovaries and lymph nodes. -
Reproductive System, Day 2 Grades 4-6, Lesson #12
Family Life and Sexual Health, Grades 4, 5 and 6, Lesson 12 F.L.A.S.H. Reproductive System, day 2 Grades 4-6, Lesson #12 Time Needed 40-50 minutes Student Learning Objectives To be able to... 1. Distinguish reproductive system facts from myths. 2. Distinguish among definitions of: ovulation, ejaculation, intercourse, fertilization, implantation, conception, circumcision, genitals, and semen. 3. Explain the process of the menstrual cycle and sperm production/ejaculation. Agenda 1. Explain lesson’s purpose. 2. Use transparencies or your own drawing skills to explain the processes of the male and female reproductive systems and to answer “Anonymous Question Box” questions. 3. Use Reproductive System Worksheets #3 and/or #4 to reinforce new terminology. 4. Use Reproductive System Worksheet #5 as a large group exercise to reinforce understanding of the reproductive process. 5. Use Reproductive System Worksheet #6 to further reinforce Activity #2, above. This lesson was most recently edited August, 2009. Public Health - Seattle & King County • Family Planning Program • © 1986 • revised 2009 • www.kingcounty.gov/health/flash 12 - 1 Family Life and Sexual Health, Grades 4, 5 and 6, Lesson 12 F.L.A.S.H. Materials Needed Classroom Materials: OPTIONAL: Reproductive System Transparency/Worksheets #1 – 2, as 4 transparencies (if you prefer not to draw) OPTIONAL: Overhead projector Student Materials: (for each student) Reproductive System Worksheets 3-6 (Which to use depends upon your class’ skill level. Each requires slightly higher level thinking.) Public Health - Seattle & King County • Family Planning Program • © 1986 • revised 2009 • www.kingcounty.gov/health/flash 12 - 2 Family Life and Sexual Health, Grades 4, 5 and 6, Lesson 12 F.L.A.S.H. -
Differential Studies of Ovarian Endometriosis Cells from Endometrium Or Oviduct
European Review for Medical and Pharmacological Sciences 2016; 20: 2769-2772 Differential studies of ovarian endometriosis cells from endometrium or oviduct W. LIU1,2, H.-Y. WANG3 1Reproductive Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China 2Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, China 3Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, the West Branch of Anhui Provincial Hospital, Hefei, Anhui, China Abstract. – OBJECTIVE: To study the promi- In most cases, EMT affects ovary and peritone- nent differences between endometriosis (EMT) um, and as a result a plump shape cyst forms in cells derived from ovary, oviduct and endometri- the ovary. The cyst is called ovarian endometrio- um, and to provided new ideas about the patho- sis cyst (aka ovarian chocolate cyst) which usually genesis of endometriosis. PATIENTS AND METHODS: contains old blood and is covered by endometrioid From June 2010 1 to June 2015, 210 patients diagnosed with en- epithelium. In 1860, Karl von Rokitansky studied dometriosis were enrolled in our study. Patients the disease and observed retrograde menstruation were treated by laparoscopy or conventional in nearly 90% of child-bearing women, and later surgeries in our hospital. Ovarian chocolate proposed “retrograde menstruation implantation cyst and paired normal ovarian tissues, fimbri- theory”. However, this theory explained endo- ated extremity of fallopian and uterine cavity en- metriosis in the abdominopelvic cavity does not domembrane tissues were collected, prepared 2 and observed by microscope. PCR was used for explain endometriosis outside of enterocelia . Lat- 3 4 amplification of target genes (FMO3 and HOXA9) er on, Iwanoff and Meyer proposed “coelomic and Western blot was used to evaluate FMO3 metaplasia theory” which stipulated that endome- and HOXA9 expression levels. -
A Case of Non-Communicating Uterine Horn Containing Functional Endometrium
logy & Ob o st ec e tr n i y c s G Rani et al., Gynecol Obstet (Sunnyvale) 2015, 5:9 Gynecology & Obstetrics DOI: 10.4172/2161-0932.1000320 ISSN: 2161-0932 Case Report Open Access A Case of Non-Communicating Uterine Horn Containing Functional Endometrium Anjali Rani*, Madhu Kumari and Shipra Department of Obstetrics and Gynaecology, Institute Of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India Abstract Uterine anoamalies are very rare. They can present with complains of amebnorrhoea, dysmenorrhoea, bad obstetrical outcome and infertility etc. Unicornuate uterus with rudimentary horn is very rare. The incidence of this is 1/100,000. Normally rudimentary horns are non- functional and non-communicating. But if they have functional endometrium they can develop hematometra. We are presenting a case of hematometra and pain in a patient with rudimentary non communicating horn with functional endometrium. Rudimentary horn should be kept as a differential diagnosis in pelvic pain. Keywords: Unicornuate uterus; Rudimentary horn; Dysmenorrhea were found in the pelvis. Exploratory laparotomy was decided and the rudimentary horn was excised by applying clamps (Figure 2). Histo- Introduction pathological examination of the specimen was reported as uterine Uterine anomalies are very rarely seen. Unicornuate uterus is a very udimentary horn with functional endometrium with haematometra. rare uterine anomaly. The incidence of congenital uterine anomalies The patient was discharged on the fifth postoperative day. She came in in fertile population is 1/200 to 1/600. The incidence of rudimentary follow up her nomal menses after 6 weeks. horn is very very rare (1:100,000). -
Imaging in Gynecology: What Is Appropriate Francisco A
Imaging in Gynecology: What is Appropriate Francisco A. Quiroz, MD Appropriate • Right or suitable • To set apart for a specific use Appropriateness • The quality or state for being especially suitable or fitting 1 Imaging Modalities Ultrasound Pelvis • Trans abdominal • Transvaginal Doppler 3-D • Hysterosonogram Computed Tomography MR PET Practice Guidelines Describe recommended conduct in specific areas of clinical practice. They are based on analysis of current literature, expert opinion, open forum commentary and informal consensus Consensus Conference National Institutes of Health (NIH) U.S. Preventive Services Task Force Centers for Disease Control (CDC) National Comprehensive Cancer Network (NCCN) American College of Physicians American College of Radiology Specialty Societies 2 Methodology Steps in consensus development ? • Formulation of the question or topic selection • Panel composition – requirements • Literature review • Assessment of scientific evidence or critical appraisal • Presentation and discussion • Drafting of document • Recommendations for future research • Peer review • Statement document • Publication – Dissemination • Periodic review and updating ACR Appropriateness Criteria Evidence based guidance to assist referring physicians and other providers in making the most appropriate imaging or treatment decision for a specific clinical condition 3 Appropriateness Criteria Expert panels • Diagnostic imaging • Medical specialty organizations American Congress of Obstetricians and Gynecologists -
Prevalence of Malignant Uterine Pathology in Utero-Vaginal Prolapse After Vaginal Hysterectomy
Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology PelviperineologyORIGINAL Pelviperineology ARTICLE Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology Pelviperineology DOI: 10.34057/PPj.2020.39.04.006 Pelviperineology 2020;39(4):137-141 Prevalence of malignant uterine pathology in utero-vaginal prolapse after vaginal hysterectomy EDGARDO CASTILLO-PINO1, VALENTINA ACEVEDO1, NATALIA BENAVIDES1, VALERIA ALONSO1, WASHIGNTON LAURÍA2 1Department of Obstetrics and Gynaecology, Urogynaecology and Pelvic Floor Unit, School of Medicine, University of the Republic, Hospital de Clínicas “Dr. Manuel Quintela”, Montevideo, Uruguay 2Department of Obstetrics and Gynaecology, School of Medicine, University of the Republic, Hospital de Clínicas “Dr. Manuel Quintela”, Montevideo, Uruguay ABSTRACT Objective: The aim of this study was to establish the prevalence of malignant uterine pathology after vaginal -
The Reproductive System
27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body -
Luteal Phase Deficiency: What We Now Know
■ OBGMANAGEMENT BY LAWRENCE ENGMAN, MD, and ANTHONY A. LUCIANO, MD Luteal phase deficiency: What we now know Disagreement about the cause, true incidence, and diagnostic criteria of this condition makes evaluation and management difficult. Here, 2 physicians dissect the data and offer an algorithm of assessment and treatment. espite scanty and controversial sup- difficult to definitively diagnose the deficien- porting evidence, evaluation of cy or determine its incidence. Further, while Dpatients with infertility or recurrent reasonable consensus exists that endometrial pregnancy loss for possible luteal phase defi- biopsy is the most reliable diagnostic tool, ciency (LPD) is firmly established in clinical concerns remain about its timing, repetition, practice. In this article, we examine the data and interpretation. and offer our perspective on the role of LPD in assessing and managing couples with A defect of corpus luteum reproductive disorders (FIGURE 1). progesterone output? PD is defined as endometrial histology Many areas of controversy Linconsistent with the chronological date of lthough observational and retrospective the menstrual cycle, based on the woman’s Astudies have reported a higher incidence of LPD in women with infertility and recurrent KEY POINTS 1-4 pregnancy losses than in fertile controls, no ■ Luteal phase deficiency (LPD), defined as prospective study has confirmed these find- endometrial histology inconsistent with the ings. Furthermore, studies have failed to con- chronological date of the menstrual cycle, may be firm the superiority of any particular therapy. caused by deficient progesterone secretion from the corpus luteum or failure of the endometrium Once considered an important cause of to respond appropriately to ovarian steroids. -
Cervical Polypectomy
Cervical Polypectomy Author: Consultant Department: Gynaecology/ Colposcopy Document Number: STHK1225 Version: 4 Review date: 01/10/2022 What is a polyp? Your doctor/nurse has advised you to have a polypectomy, which is the removal of a polyp. A polyp is a flesh-like structure (often described as looking like a cherry on a stalk or a skin tag), which can develop in many places in the body, including the cervix and uterus. It may have blood vessels running through it, which can often be the cause of bleeding. If it is thought the polyp is in your uterus, you will need to have a hysteroscopy (a procedure that uses a narrow camera to look inside the cavity of the uterus). This procedure is carried out as a gynaecology outpatient appointment at the Women’s Centre, and is performed in a special clinic in the Diagnostic Suite. You will receive a further appointment for this treatment and be given a different leaflet to explain the hysteroscopy procedure. If for any reason the polyp cannot be removed or fully removed during either of these treatments, the doctor will advise you of other options. Reasons for the procedure As you know you have been referred to the Colposcopy Clinic because you have a polyp on the cervix. Sometimes the cervical polyp is broad based, where it does not have a stalk but sits on the cervix. Often they cause no symptoms and are found as a result of other examinations. Polyps are usually benign (non-cancerous). Less than 1 % (1 in 100) may have pre-cancerous or cancerous changes within them; it is therefore advisable to have them removed. -
American Family Physician Web Site At
Diagnosis and Management of Adnexal Masses VANESSA GIVENS, MD; GREGG MITCHELL, MD; CAROLYN HARRAWAY-SMITH, MD; AVINASH REDDY, MD; and DAVID L. MANESS, DO, MSS, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee Adnexal masses represent a spectrum of conditions from gynecologic and nongynecologic sources. They may be benign or malignant. The initial detection and evaluation of an adnexal mass requires a high index of suspicion, a thorough history and physical examination, and careful attention to subtle historical clues. Timely, appropriate labo- ratory and radiographic studies are required. The most common symptoms reported by women with ovarian cancer are pelvic or abdominal pain; increased abdominal size; bloating; urinary urgency, frequency, or incontinence; early satiety; difficulty eating; and weight loss. These vague symptoms are present for months in up to 93 percent of patients with ovarian cancer. Any of these symptoms occurring daily for more than two weeks, or with failure to respond to appropriate therapy warrant further evaluation. Transvaginal ultrasonography remains the standard for evaluation of adnexal masses. Findings suggestive of malignancy in an adnexal mass include a solid component, thick septations (greater than 2 to 3 mm), bilaterality, Doppler flow to the solid component of the mass, and presence of ascites. Fam- ily physicians can manage many nonmalignant adnexal masses; however, prepubescent girls and postmenopausal women with an adnexal mass should be referred to a gynecologist or gynecologic oncologist for further treatment. All women, regardless of menopausal status, should be referred if they have evidence of metastatic disease, ascites, a complex mass, an adnexal mass greater than 10 cm, or any mass that persists longer than 12 weeks.