The Biochemistry of Certain Fungicides in the Animal Body

Total Page:16

File Type:pdf, Size:1020Kb

The Biochemistry of Certain Fungicides in the Animal Body THE BIOCHEMISTRY OF CERTAIN FUNGICIDES IN THE ANIMAL BODY By THOMAS EDWARD BARMAN A Theists presented in accordance with the regulations governing the award of the degree of Doctor of Philosophy in the University of London. partment of Biochemistry, St. Mary is Hospital Medical.School, Idomdon, W.2, August, 1961. TO iii ABSTRACT OF THESIS The fates of dehydroacetic acid and of two closely related pyronee, triacetic acid lactone and imino dehydroacetic acid have been investig- ated in the rabbit and rat. The synthesis of (14Cid-dehydroacetic acid* 'from 14C.1-acetyl bromide is described; in addition, the preparation of (14031-triacetic acid lactone and [ 4O4)-imino dehydroacetic acid, both from [140 J-dehydroacetic acid, are reported. By administering these labelled compounds to rabbits and rats, it was shown that [2.40J-dehydro- acetic acid gave rise to about 10% 14002 in the expired air, (1403). triacetio acid lactone to 50% and Cihed-imino dehydroacetic acid to 2..3%. In the urines of animals dosed with PICJ-dehydroacetic acid, dehydroacetic acid itself, hydroxy-dehydroacetic acid, their respective imino derivatives, triacetic acid lactone, urea and two metabolites of. unknown structures, metabolites "X" and lin were shown to be present by colour chromatography and eutoradiography. Of these, dehydroacetic acid, its hydrozy derivative and metabolitelfiXo'have been iao1ated, and imino - dehydroacetic acid and imino'hydroxydehydroacetic acid shown to be urinary artifacts. Work done on rat liver and kidney slices has established that, while triacetic acid lactone was oxidised in both, dehydroacetic acid was only attacked to a detectable extent,in liver slices. The binding of dehydroacetic acid to plasma albumin was shown by paper electro- phoresis. 'For structural formulae, please. see fig. 1 iv pBEFACE, "We feel that the aspect of the possible longterm effect of continued ingestion of small amounts of these substances (which are undoubtedly toxic in larger amounts) upon the general health is generally overlooked". (lord Kilbracken, 1961). In recent years some 700 ohemioals have found their way into . manie food. It was, therefore, with good reason that the House of horde quite recently expressed its concern at the danger to health arising from the use of chemicals in the growing, storing and processing of food. Accordingly, the possible use of a chemical in food production should be viewed with suspicion until such a compound has been found to be without deleterioda effect on the human organism. When dehydroacetic acid was rescued from obscurity by the Doir Chemical Company and praised as having outstanding fungicidal properties, its use as a food preservative was forbidden by the U.S, Food and Drug Administration, This was thought to be necessary. because of the scanty material available on its metabolism. However, despite its ability to be absorbed AA the skin, the use of dehydroacetic acid is at present allowed in cosmetics and in certain 6 food powder preparations. In view of the above, the elucidation of v. the metaboliem of dehydroacetic acid in the animal organism would appear to be of paramount importance. The present work was carried out in the three academic years beginning October let, l958, in the Biochemistry Department of St. Mary's Hospital Medical School, The thesis is divided into five chapters. Chapter I- is a short. review of the literature pertaining to the chemistry and biological properties of dehydro- acetic acid, triacetic acid lactone and imino-dehydroacetic acid. Chapter 2 describes the synthesis of materials used, and Chapter 3 certain methods employed. Chapter I. includes the experimental results obtained during the coUrse of this work; these are discussed in Chapter 5. I am deep]; indebted to Professor R. T. Williams for his constant advice and patience in supervising this research, to Dr. D. V. Parke, without whose generous help this work would have been impossible, and to Drs. C. King, D, Robinson and J. N. Smith for much helpful advice. Special thanks are due to Mr. F. Audas and his staff or their unstinted technical assistance, and to Miss 0# M. Parkes for typing the manuscript. The Distillers Company made this research possible by the provision of the necessary funds and samples of dehydroacetic acid. CHAPTER 1. INrmaDucTiox Page Dehtdroseetie Acid ..,. 1 ?Wawa and chemical properties 1 Antimicrobial properties 6 .. Absorption and distribution 12. Toxicology 4,4o, * -Ars * op ** ors... ******** ***lie** 13 Chemical Pathology ....,....,..................,.... * .. ** edloalip 16 Detoxication Op * Ora * aaelpaeaaalkoo ** a ** afol#04,001 ****** 11 * a *** isse 17 Triacetic Acid Lactone ...... ********** p.1"......., ************ . 19 Physical and chemical properties .............-....... ***** • 19 Biological properties ,........ ****** ....,..... 21 Zaino dehydroacetic Laid iliaaroolvorerfilloOlkailbeira * iii * a * Oa ***** gait 23 CHAPTER 2. MATERIALS Syntheses of [140-Compounds * 25 Dehydroaeetic acid **** iva.aairallife00164041,1,* * eala **** 25 Triaaetio said lautone ****** 410....tesartrolosot•toloottoolos 29 'mina dehydroacetic acid faaaa.a0 **** 00.4itairodia **** **** 30 IMAM, Materials *** ** 30 - Atteepted Syntheses of Certain Pyrones ****** 31 CHAPTER 3. METHOD Metabolism %Ober 37 Estimation of Respiratory Carbon Diodde * ** 38 Chromatographic Methods * Aloreesosiorsmooss 39 Isotope Dilution Experiments ***** 0... Moat ** ** oosoorole, 39 CHAPTER 4. THE METABOLISM OP DERIDROACETIC ACID AND SOME RELATED PIRON&S IN THE RABBIT AND RAT. Chromatographic Investigations of the Urines of Animals administered certainpyronee ..,............ The Isolation of Metabolites from the Urines of two Rabbits administered Dehydroasetic Acid 51 Identification and Properties of Hydroxydehydroacetic Acid is. 53 Some Properties of Metabolite 1.I" laalitilsoolarafaifkoaaasaataikaaa 58 Page T Metabolism of [14CAJ.Dehydroacetic Acid, (1403,14riacetto Acid Eastone and i1404J-Imino debydroacetio Aoid in the intact Rabbit and Rat 58 The Conversion of Dehydroactetio Acid and Rydroxydehydroacetio acid into their respective Imino compounds in Rabbit and Rat Urines 4 ***** 44 ******** 10444•444.4 60 Tissue Slice Experiments 10,11P000 **** ** 71 The Plasma Binding of Debydroacetic Acid =AMR 5, DISCLIZION 89 APPENDIX I. Physical Properties of Certain Poems ......... 104 APPENDIX II. The Rates of Excretion of 14CO2 lathe Expired Air and total Urine Radio. activities in Rabbits and Rats sed on [140A)-Dehydroacetic Acid, ., 3Triacetio Acid Laotone or [40.4 Imino dehydroaeetio Acid 110 APPENDIX XII', Diets. 00,4104,.0,00.0041046 *** * 001004. 00040404001$ 120 REFEREWES *** 4 * 404,4 121 CHAPTER I INTRODUCTION DehYdroacetlo Acid (a) ANVARELVand Chemioal Properties Although dehydroacetic acid was discovered. as long ago as 1866 laeutber), it was not till almost a hundred years later that convincing evidence of its structure was presented (Berson, 1952). Since the turn of the century — when the compound excited the interest of several eminent chemists (Perkin, Oswald, Collie, Hilditch) — there has been a dearth of information on the chemistry of the pyrone in the literature. The first edition of Beilstein unwisely included dehydroaoetic acid in the aromatic. series, since when it is heated with barium hydroxide (Collie, 1891a; Collie and MTer.4K, 1893) orcinol is formed One might equally well argue that acetone is aromatic since it is polymerized to mesitylene on treatment with sulphuric acid! Debydroacetic acid when carefully purified by sublima— tion is a_colourless crystalline substanoe without odour or taste. It dissolves readily in acetone, benzene and hot ethanol, but is much less Soluble in carbon tetrachloride or cold alcohol. Its solubility in water is low (<100 mg./ 100 m1. at 25°) but the pyrone dissolves readily in cold aqueous alkali to give salts. The acidity dehydroacetic 2. acid (pK 5.3) is due to its enolio character; consequently it gives a blood"red colour with ferric chloride and decolourises bromine water. The 2,4Apyronone nucleus of dehydroacetio acid is reser. kably stable to hot mineral acids. Concentrated hydrochloric acid converts the compound into 2,6.0dimethy140-pyrone (Collie, 169I8) but At sulphuric acid results in deacetylation to triaoetic said lac:tone (Collie, 1891b) Whilst 83 sulphuric acid provides an isomer, namely 2,6vdimethylorone..3.- carboxylio acid. (Collie and liilditoh, 1907). Dellydroacetio acid is steam volatile but some decomposition to 2„6.dimethyl.... 4.pyrone and carbon dioxide wow% (Collie, 18910)* Dehydroaoetic acid is very susoeptible to the action of strong alkalies; acetone, mriiinn c acid, acetate and carbon dirrilde•have been mentioned as products of allsOi decamposi.. tion (Perkin, 1885 1887)• The pyrone reacts readily with he usual ketonic reagents yielding crystalline derivatives. Thus, an oxime and a phanylhydresone are known (Perkin, 1887); the latter undergoes oyalisation when treated with hydrochloric: acid (Benary 1910): Ph— Nil— N 1111 N tai G 0— 3 3 ill The act of ammonia on debydroacctio acid is rather ourious In the cold, or on gentle waraixig, an tid.2710 deriva- tive is foraged. (Ockl.lie, 1894. Refluxing with strong ammonia yields 2j6odisetbyl.4*.:pyridone..3.carbowlio acid (Collie ,and IUlditoh, 1907; Rassweiler and Adams 19214. The latter is readily de carboxylated when heated to 27CP to give 40.1utidone (Rasswsiler and Moms I9210• 4. 0 0 NH 0— OH NH3 3 cold. 0 OH 3 triacetic acid 3.aotone refliut, NH 3 2,6.dimethy1q.4..pyridone.- 3-oarboxylio
Recommended publications
  • Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
    Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18).
    [Show full text]
  • Engineering Acetyl-Coa Metabolic Shortcut for Eco-Friendly Production
    bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Engineering acetyl-CoA metabolic shortcut for eco-friendly 5 production of polyketides triacetic acid lactone in Yarrowia lipolytica 6 7 8 Huan Liu1,2, Monireh Marsafari 1, 3, Fang Wang2, Li Deng2,* and Peng Xu1,* 9 10 11 1Department of Chemical, Biochemical and Environmental Engineering, University of 12 Maryland, Baltimore County, Baltimore, MD 21250. 13 14 2College of Life Science and Technology, Beijing University of Chemical 15 Technology, Beijing, China. 16 17 3Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic 18 Republic of Iran 19 20 21 22 23 24 25 26 27 28 * Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049. E-mail address: [email protected] (PX) and [email protected] (LD). 1 bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 29 Abstract 30 Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and 31 fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and 32 malonyl-CoA, represent a large family of biological compounds with diversified 33 bioactivity. Harnessing microbial bioconversion is considered as a feasible approach 34 to large-scale production of polyketides from renewable feedstocks.
    [Show full text]
  • Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
    Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18).
    [Show full text]
  • MARKHAM-DISSERTATION-2018.Pdf
    Copyright by Kelly Ann Markham 2018 The Dissertation Committee for Kelly Ann Markham Certifies that this is the approved version of the following dissertation: Expanding the Product Portfolio of Yarrowia lipolytica through Metabolic Engineering and Synthetic Biology Tool Development Committee: Hal Alper, Supervisor Lydia Contreras George Georgiou Adrian Keatinge-Clay Expanding the Product Portfolio of Yarrowia lipolytica through Metabolic Engineering and Synthetic Biology Tool Development by Kelly Ann Markham Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2018 Dedication For those who have been made to feel small. You are strong. You are important. You deserve to take up space. Acknowledgements First and foremost, I want to thank Dr. Hal Alper for being a supportive advisor and helping me grow in all aspects of being a scientist. From helpful tricks for personal development like working with Microsoft (that alignment function will always haunt me) to high expectations requiring proper experimental design, I have learned an amazing amount from Hal in the last five years. Hal has proven willing to take time to make sure that students are taken care of and meeting their full potential. Thanks for taking that time to make us all better researchers and giving us room to explore different projects and ideas. I am forever grateful for the opportunity to work with Hal and the Alper lab. Next, I would like to thank Dr. Lydia Contreras, Dr. George Georgiou, and Dr.
    [Show full text]
  • Synthesis of Triacetic Acid Lactone Mannich Bases and Their Inhibition of Corrosion John Rey Apostol Romal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion John Rey Apostol Romal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemistry Commons Recommended Citation Romal, John Rey Apostol, "Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion" (2016). Graduate Theses and Dissertations. 15802. https://lib.dr.iastate.edu/etd/15802 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion by John Rey Apostol Romal A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Organic Chemistry Program of Study Committee: George A. Kraus, Major Professor Brent Shanks Arthur Winter Iowa State University Ames, Iowa 2016 Copyright © John Rey Apostol Romal, 2016. All rights reserved. ii DEDICATION To my family and friends. iii TABLE OF CONTENTS DEDICATION ........................................................................................................... ii LIST OF ABBREVIATIONS
    [Show full text]
  • Bioengineering Triacetic Acid Lactone Production in Yarrowia Lipolytica for Pogostone Synthesis
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis Yu, James; Landberg, Jenny Marie; Shavarebi, Farbod; Bilanchone, Virginia; Okerlund, Adam; Wanninayake, Umayangani; Zhao, Le; Kraus, George; Sandmeyer, Suzanne Published in: Biotechnology and Bioengineering Link to article, DOI: 10.1002/bit.26733 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Yu, J., Landberg, J. M., Shavarebi, F., Bilanchone, V., Okerlund, A., Wanninayake, U., Zhao, L., Kraus, G., & Sandmeyer, S. (2018). Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnology and Bioengineering, 115(9), 2383-2388. https://doi.org/10.1002/bit.26733 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Biotechnol Manuscript Author Bioeng. Author Manuscript Author manuscript; available in PMC 2019 November 14.
    [Show full text]
  • Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds Over Heterogeneous Catalysts
    Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts By Mei Chia A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) At the UNIVERSITY OF WISCONSIN-MADISON 2013 Date of final oral examination: 11th July 2013 The dissertation is approved by the following members of the Final Oral Committee: James A. Dumesic, Professor, Chemical and Biological Engineering Thomas F. Kuech, Professor, Chemical and Biological Engineering Manos Mavrikakis, Professor, Chemical and Biological Engineering Brian F. Pfleger, Assistant Professor, Chemical and Biological Engineering Dane Morgan, Associate Professor, Materials Science and Engineering i Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts Mei Chia Under the supervision of Professor James A. Dumesic At the University of Wisconsin-Madison The catalytic deoxygenation of biomass-derived compounds through selective C-O hydrogenolysis, catalytic transfer hydrogenation and lactonization, and decarboxylation to value- added chemicals over heterogeneous catalysts was examined under liquid phase reaction conditions. The reactions studied involve the conversion or production of heterocyclic compounds, specifically, cyclic ethers, lactones, and 2-pyrones. A bimetallic RhRe/C catalyst was found to be selective for the hydrogenolysis of secondary C-O bonds for a broad range cyclic ethers and polyols. Results
    [Show full text]
  • Renewable Feedstocks Towards a Sustainable Future for Polymers
    RENEWABLE FEEDSTOCKS TOWARDS A SUSTAINABLE FUTURE FOR POLYMERS A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY HUSSNAIN SAJJAD IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY THERESA M. REINEKE & WILLIAM B. TOLMAN, ADVISORS February 2021 Hussnain Sajjad © 2021 Acknowledgements I would first like to extend my sincere gratitude to my advisors, Profs. Theresa Reineke and Bill Tolman. Theresa, for always being a kind and encouraging mentor who offers unrestrictive freedom of exploration to her students; and Bill, for leading by example when it comes to thinking like a scientist and “digging deep” in order to find solutions to tough problems. Next, I would like to thank Prof. Tom Hoye, David Giles, Prof. Jane Wissinger, Letitia Yao, and Prof. Chris Ellison for their helpful feedback and mentorship, both in formal and informal ways, which has helped me immensely throughout this program. Graduate school would have felt incomplete without the friends and acquaintances I have made along the way. I especially am grateful to the past and present members of the Reineke and Tolman groups for their scientific and non-scientific conversations, encouragement and assistance during times when obstacles seem impassable, and for the countless positive memories I have gained over the years. I am grateful to all my friends, mentors, peers, and collaborators who have been a part of my scientific journey thus far. Furthermore, my family, especially my parents, has never wavered in their support for me. I thank them for the inspiration, encouragement, and motivation they have unconditionally provided to me.
    [Show full text]
  • Engineering Acetyl-Coa Metabolic Shortcut for Eco-Friendly Production of Polyketides Triacetic Acid Lactone in Yarrowia Lipolyti
    1 2 3 4 Engineering acetyl-CoA metabolic shortcut for eco-friendly 5 production of polyketides triacetic acid lactone in Yarrowia lipolytica 6 7 8 Huan Liu1,2, Monireh Marsafari 1, 3, Fang Wang2, Li Deng2,* and Peng Xu1,* 9 10 11 1Department of Chemical, Biochemical and Environmental Engineering, University of 12 Maryland, Baltimore County, Baltimore, MD 21250. 13 14 2College of Life Science and Technology, Beijing University of Chemical 15 Technology, Beijing, China. 16 17 3Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic 18 Republic of Iran 19 20 21 22 23 24 25 26 27 28 * Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049. E-mail address: [email protected] (PX) and [email protected] (LD). 1 29 Abstract 30 Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and 31 fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and 32 malonyl-CoA, represent a large family of biological compounds with diversified 33 bioactivity. Harnessing microbial bioconversion is considered as a feasible approach 34 to large-scale production of polyketides from renewable feedstocks. Most of the 35 current polyketide production platform relied on the lengthy glycolytic steps to 36 provide acetyl-CoA, which inherently suffers from complex regulation with 37 metabolically-costly cofactor/ATP requirements. Using the simplest polyketide 38 triacetic acid lactone (TAL) as a testbed molecule, we demonstrate that acetate uptake 39 pathway in oleaginous yeast (Yarrowia lipolytica) could function as an acetyl-CoA 40 shortcut to achieve metabolic optimality in producing polyketides.
    [Show full text]
  • Engineering Acetyl-Coa Metabolic Shortcut for Eco-Friendly Production
    bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Engineering acetyl-CoA metabolic shortcut for eco-friendly 5 production of polyketides triacetic acid lactone in Yarrowia lipolytica 6 7 8 Huan Liu1,2, Monireh Marsafari 1, 3, Fang Wang2, Li Deng2,* and Peng Xu1,* 9 10 11 1Department of Chemical, Biochemical and Environmental Engineering, University of 12 Maryland, Baltimore County, Baltimore, MD 21250. 13 14 2College of Life Science and Technology, Beijing University of Chemical 15 Technology, Beijing, China. 16 17 3Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic 18 Republic of Iran 19 20 21 22 23 24 25 26 27 28 * Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049. E-mail address: [email protected] (PX) and [email protected] (LD). 1 bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 29 Abstract 30 Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and 31 fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and 32 malonyl-CoA, represent a large family of biological compounds with diversified 33 bioactivity. Harnessing microbial bioconversion is considered as a feasible approach 34 to large-scale production of polyketides from renewable feedstocks.
    [Show full text]
  • Metabolic Engineering of Saccharomyces Cerevisiae for the Production of Triacetic Acid Lactone
    UC Irvine UC Irvine Previously Published Works Title Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Permalink https://escholarship.org/uc/item/0nj4v8k6 Authors Cardenas, Javier Da Silva, Nancy A Publication Date 2014-09-01 DOI 10.1016/j.ymben.2014.07.008 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Metabolic Engineering 25 (2014) 194–203 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone Javier Cardenas, Nancy A. Da Silva n Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 USA article info abstract Article history: Biobased chemicals have become attractive replacements for their fossil-fuel counterparts. Recent Received 15 May 2014 studies have shown triacetic acid lactone (TAL) to be a promising candidate, capable of undergoing Received in revised form chemical conversion to sorbic acid and other valuable intermediates. In this study, Saccharomyces 16 July 2014 cerevisiae was engineered for the high-level production of TAL by overexpression of the Gerbera hybrida Accepted 21 July 2014 2-pyrone synthase (2-PS) and systematic engineering of the yeast metabolic pathways. Pathway analysis Available online 30 July 2014 and a computational approach were employed to target increases in cofactor and precursor pools to Keywords: improve TAL synthesis. The pathways engineered include those for energy storage and generation, Saccharomyces cerevisiae pentose biosynthesis, gluconeogenesis, lipid biosynthesis and regulation, cofactor transport, and Triacetic acid lactone fermentative capacity.
    [Show full text]
  • A Technoeconomic Platform for Early-Stage Process Design and Cost Estimation of Joint Fermentative-Catalytic Bioprocessing
    processes Article A Technoeconomic Platform for Early-Stage Process Design and Cost Estimation of Joint Fermentative-Catalytic Bioprocessing Mothi Bharath Viswanathan 1,*, D. Raj Raman 1,*, Kurt A. Rosentrater 1 and Brent H. Shanks 2 1 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected] (M.B.V.); [email protected] (D.R.R.); Tel.: +515-203-7040 (M.B.V.); +515-294-0465 (D.R.R.) Received: 30 December 2019; Accepted: 13 February 2020; Published: 16 February 2020 Abstract: Technoeconomic analyses using established tools such as SuperPro Designer® require a level of detail that is typically unavailable at the early stage of process evaluation. To facilitate this, members of our group previously created a spreadsheet-based process modeling and technoeconomic platform explicitly aimed at joint fermentative-catalytic biorefinery processes. In this work, we detail the reorganization and expansion of this model—ESTEA2 (Early State Technoeconomic Analysis, version 2), including detailed design and cost calculations for new unit operations. Furthermore, we describe ESTEA2 validation using ethanol and sorbic acid process. The results were compared with estimates from the literature, SuperPro Designer® (Version 8.5, Intelligen Inc., Scotch Plains, NJ, 2013), and other third-party process models. ESTEA2 can perform a technoeconomic analysis for a joint fermentative-catalytic process with just 12 user-supplied inputs, which, when modeled in SuperPro Designer®, required approximately eight additional inputs such as equipment design configurations. With a reduced amount of user information, ESTEA2 provides results similar to those in the literature, and more sophisticated models (ca.
    [Show full text]