Signature Redacted Signature of Author

Total Page:16

File Type:pdf, Size:1020Kb

Signature Redacted Signature of Author Biosensor-based Strategies for Improving Pathway Production in Escherichia coli MASSACHUSETTS INSTITUTE OF TECHNOLOGY By MAY 23 2019 Stephanie J. Doong LIBRARIES ARCHIVES B.S. Chemical Engineering Stanford University, 2014 Submitted to the Department of Chemical Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 2019 Massachusetts Institute of Technology. All rights reserved Signature redacted Signature of Author ............................................................ (1/ Stephanie J. Doong Department of Chemical Engineering May 7, 2019 Certified by ................................................................. Signature redacted 61 Kristala L. J. Prather Professor of Chemical Engineering Thesis Supervisor Signature redacted Accepted by.......................................................... Patrick S. Doyle Professor of Chemical Engineering Chairman, Committee for Graduate Students 1 2 Biosensor-based Strategies for Improving Pathway Production in Escherichia coli By Stephanie J. Doong Submitted to the Department of Chemical Engineering on May 7, 2019 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering Abstract Microbial production of chemicals and fuels is an attractive renewable alternative to petroleum- based processes. D-glucaric acid, a Department of Energy top value-added chemical from biomass, is a precursor to polymers such as nylons and used in detergents. An engineered metabolic pathway requiring three heterologous enzymes to convert glucose into glucaric acid in Escherichia coli was previously demonstrated by the Prather lab. Glucaric acid production has been shown to be limited by the two downstream enzymes myo-inositol-1-phosphate synthase (MIPS) and myo-inositol oxygenase (MIOX). This work develops and deploys a biosensor that recognizes a pathway intermediate in order to overcome both limitations. A biosensor for myo-inositol (MI) was developed using the transcriptional regulator IpsA from the organism Corynebacterium glutamicum. A hybrid promoter was designed to enable function in the desired host organism E. coli. The modular design of the biosensor permitted the behavior and Ml dose response to be adjusted for the pathway applications. The myo-inositol biosensor was used to regulate expression of Miox, the enzyme that consumes myo-inositol, such that Miox was transcribed only in the presence of its substrate. Controlled expression of Miox led to a 2.5-fold increase in glucaric acid titer compared to the static case where Miox was constitutively expressed. This dynamic regulation scheme was then paired with a system that dynamically knocked down glycolysis, which independently improved glucaric acid production by relieving competition of glycolysis with MIPS, the first pathway enzyme. The layered dynamic regulation scheme improved glucaric acid production by up to 9-fold. Next, the biosensor was used as a high-throughput screen for mutants of MIPS generated by directed evolution. The biosensor enabled a large library of MIPS to be screened by fluorescence- activated cell sorting (FACS). The screen identified MIPS mutants with up to 20% improvement in myo-inositol production. This work used a biosensor to tackle two pathway limitations and improve glucaric acid production, showcasing the biosensor as a powerful metabolic engineering tool. 3 4 Acknowledgements Many thanks to Kris for your guidance, mentorship, and excitement about science over these past few years. I left every meeting feeling motivated, no matter how unprepared I felt before or how awful the results looked. Thank you for maintaining that positive attitude! I would also like to thank my committee members Professors Hadley Sikes and Tim Lu for their support. To all the members of the Prather lab past and present - thank you for making the lab a friendly and fun place to be. Thank you to Kat and Dity for welcoming me to the group and training me. Many thanks to Sue Zanne for all of your pro tips and assistance even after you went on to do bigger and better things. To Jason, a huge thank you for your expertise, experience, and the time you took to troubleshoot many experiments with me. Thank you to Lisa for teaching me about glucaric acid, going on adventures with me, and commiserating about being an adult. Many thanks to Kevin and Jennifer, who brought new energy and enthusiasm to the lab when my motivation was at an all-time low and for organizing team Phage Attack. Thank you to my undergraduate student Pep, who stuck around despite your disgust at the smell of autoclaved LB and multiple experiments gone awry. Many thanks to all the musicians and groups I have had the pleasure to play with. MITSO, Mercury, and Du Bois Orchestras, thank you for giving me the opportunity to play and grow musically. Thank you to the "Fish Heads" quintet (Anne, Isabelle, Eva, and Alan) for very entertaining rehearsals. To Carina, Roger, and Hoon, thank you for welcoming me to the group. Thank you to my teacher, Sarita, for believing in me, helping developing my sound, and improving my violin playing. To those of you who went to practice school with me, it is not a small achievement that we are still friends! Thanks for being team players as colleagues, great travel companions, and very cool people. Special thanks to Sarah for being a wonderful roommate. Thank you to Team Celery - I would not have survived first semester without you. I am so lucky to have an amazing group of friends. Thank you to my roommate, Christy, for listening to me complain about my day, fabulous wine nights, and for always telling me to use a larger pot when cooking. To Shuting, thank you for your sense of humor and always staying calm through any situation. Thank you to Miao, yeah buddy, for making everything seem like it "ain't nothing but a peanut". Thank you to Mike, my first friend at MIT, for enjoying horror movies and climbing with me. German, thank you for singing with me and encouraging me to get out, see concerts, and have fun. Max, thank you for eating food with me, coming to my concerts (my biggest fan!), and for always listening. To my family - thank you for all your support. Many thanks to my brother Justin for being my adviser on all things tech and for very interesting conversations. Thank you to my parents for living the "graduate student lifestyle" so we could attend college. And I very much appreciate you taking us on amazing trips all around the world. It has been a challenging journey, but I have truly enjoyed it, and I've also laughed quite a bit along the way. Stephanie Doong 5 6 Contents 1. Introduction ....................................................................................................................... 15 1.1 Engineering Organism s............................................................................................... 16 1.2 Biosensors as Tools for M etabolic Engineering ......................................................... 19 1.3 Dynam ic Regulation Strategies for Pathw ay Im provem ent....................................... 22 1.4 High-Throughput Screening of Directed Evolution Libraries ...................................... 26 1.5 D-Glucaric Acid Pathway ............................................................................................ 30 1.6 Thesis Objectives ............................................................................................................ 33 1.7 Thesis Organization ........................................................................................................ 33 2. m yo-Inositol Biosensor Developm ent .............................................................................. 35 2.1 Introduction.................................................................................................................... 37 2.2 M aterials and M ethods ............................................................................................. 39 2.2.1 M l Sensor Plasm id Construction ......................................................................... 39 2.2.2 Fluorescence M easurem ents............................................................................... 41 2.2.3 M I Ferm entation ................................................................................................ 42 2.2.4 M I Quantification ................................................................................................ 42 2.3 Results and Discussion ................................................................................................ 45 2.3.1 Construction and Characterization of the myo-Inositol Biosensor ..................... 45 7 2.4 Conclusions..................................................................................................................... 52 3. Dynam ic Regulation of M IOX............................................................................................ 53 3.1 Introduction.................................................................................................................... 55 3.2 M aterials and M ethods ............................................................................................... 59 3.2.1 Glucaric Acid Pathw ay Plasm id Construction ...................................................... 59 3.2.2 Strain Construction .............................................................................................. 61 3.2.3 Glucaric acid Ferm entation...............................................................................
Recommended publications
  • Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
    Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18).
    [Show full text]
  • Engineering Acetyl-Coa Metabolic Shortcut for Eco-Friendly Production
    bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Engineering acetyl-CoA metabolic shortcut for eco-friendly 5 production of polyketides triacetic acid lactone in Yarrowia lipolytica 6 7 8 Huan Liu1,2, Monireh Marsafari 1, 3, Fang Wang2, Li Deng2,* and Peng Xu1,* 9 10 11 1Department of Chemical, Biochemical and Environmental Engineering, University of 12 Maryland, Baltimore County, Baltimore, MD 21250. 13 14 2College of Life Science and Technology, Beijing University of Chemical 15 Technology, Beijing, China. 16 17 3Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic 18 Republic of Iran 19 20 21 22 23 24 25 26 27 28 * Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049. E-mail address: [email protected] (PX) and [email protected] (LD). 1 bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 29 Abstract 30 Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and 31 fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and 32 malonyl-CoA, represent a large family of biological compounds with diversified 33 bioactivity. Harnessing microbial bioconversion is considered as a feasible approach 34 to large-scale production of polyketides from renewable feedstocks.
    [Show full text]
  • The Biochemistry of Certain Fungicides in the Animal Body
    THE BIOCHEMISTRY OF CERTAIN FUNGICIDES IN THE ANIMAL BODY By THOMAS EDWARD BARMAN A Theists presented in accordance with the regulations governing the award of the degree of Doctor of Philosophy in the University of London. partment of Biochemistry, St. Mary is Hospital Medical.School, Idomdon, W.2, August, 1961. TO iii ABSTRACT OF THESIS The fates of dehydroacetic acid and of two closely related pyronee, triacetic acid lactone and imino dehydroacetic acid have been investig- ated in the rabbit and rat. The synthesis of (14Cid-dehydroacetic acid* 'from 14C.1-acetyl bromide is described; in addition, the preparation of (14031-triacetic acid lactone and [ 4O4)-imino dehydroacetic acid, both from [140 J-dehydroacetic acid, are reported. By administering these labelled compounds to rabbits and rats, it was shown that [2.40J-dehydro- acetic acid gave rise to about 10% 14002 in the expired air, (1403). triacetio acid lactone to 50% and Cihed-imino dehydroacetic acid to 2..3%. In the urines of animals dosed with PICJ-dehydroacetic acid, dehydroacetic acid itself, hydroxy-dehydroacetic acid, their respective imino derivatives, triacetic acid lactone, urea and two metabolites of. unknown structures, metabolites "X" and lin were shown to be present by colour chromatography and eutoradiography. Of these, dehydroacetic acid, its hydrozy derivative and metabolitelfiXo'have been iao1ated, and imino - dehydroacetic acid and imino'hydroxydehydroacetic acid shown to be urinary artifacts. Work done on rat liver and kidney slices has established that, while triacetic acid lactone was oxidised in both, dehydroacetic acid was only attacked to a detectable extent,in liver slices. The binding of dehydroacetic acid to plasma albumin was shown by paper electro- phoresis.
    [Show full text]
  • Rewiring Yarrowia Lipolytica Toward Triacetic Acid Lactone for Materials Generation
    Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation Kelly A. Markhama,1, Claire M. Palmerb,1, Malgorzata Chwatkoa, James M. Wagnera, Clare Murraya, Sofia Vazqueza, Arvind Swaminathana, Ishani Chakravartya, Nathaniel A. Lynda, and Hal S. Alpera,b,2 aMcKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712; and bInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved January 22, 2018 (received for review December 6, 2017) Polyketides represent an extremely diverse class of secondary me- or challenging syntheses, this is not an option for any larger-scale tabolites often explored for their bioactive traits. These molecules are chemistry application. also attractive building blocks for chemical catalysis and polymeriza- Here, we focus on the interesting, yet simple, polyketide, tri- tion. However, the use of polyketides in larger scale chemistry acetic acid lactone (TAL) as it is derived from two common applications is stymied by limited titers and yields from both microbial polyketide precursors, acetyl–CoA and malonyl–CoA. TAL has and chemical production. Here, we demonstrate that an oleaginous been demonstrated as a platform chemical that can be converted organism (specifically, Yarrowia lipolytica) can overcome such produc- into a variety of valuable products traditionally derived from tion limitations owing to a natural propensity for high flux through fossil fuels including sorbic acid, a common food preservative acetyl–CoA. By exploring three distinct metabolic engineering strate- with a global demand of 100,000 t (1, 15–18).
    [Show full text]
  • MARKHAM-DISSERTATION-2018.Pdf
    Copyright by Kelly Ann Markham 2018 The Dissertation Committee for Kelly Ann Markham Certifies that this is the approved version of the following dissertation: Expanding the Product Portfolio of Yarrowia lipolytica through Metabolic Engineering and Synthetic Biology Tool Development Committee: Hal Alper, Supervisor Lydia Contreras George Georgiou Adrian Keatinge-Clay Expanding the Product Portfolio of Yarrowia lipolytica through Metabolic Engineering and Synthetic Biology Tool Development by Kelly Ann Markham Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2018 Dedication For those who have been made to feel small. You are strong. You are important. You deserve to take up space. Acknowledgements First and foremost, I want to thank Dr. Hal Alper for being a supportive advisor and helping me grow in all aspects of being a scientist. From helpful tricks for personal development like working with Microsoft (that alignment function will always haunt me) to high expectations requiring proper experimental design, I have learned an amazing amount from Hal in the last five years. Hal has proven willing to take time to make sure that students are taken care of and meeting their full potential. Thanks for taking that time to make us all better researchers and giving us room to explore different projects and ideas. I am forever grateful for the opportunity to work with Hal and the Alper lab. Next, I would like to thank Dr. Lydia Contreras, Dr. George Georgiou, and Dr.
    [Show full text]
  • Synthesis of Triacetic Acid Lactone Mannich Bases and Their Inhibition of Corrosion John Rey Apostol Romal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion John Rey Apostol Romal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemistry Commons Recommended Citation Romal, John Rey Apostol, "Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion" (2016). Graduate Theses and Dissertations. 15802. https://lib.dr.iastate.edu/etd/15802 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion by John Rey Apostol Romal A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Organic Chemistry Program of Study Committee: George A. Kraus, Major Professor Brent Shanks Arthur Winter Iowa State University Ames, Iowa 2016 Copyright © John Rey Apostol Romal, 2016. All rights reserved. ii DEDICATION To my family and friends. iii TABLE OF CONTENTS DEDICATION ........................................................................................................... ii LIST OF ABBREVIATIONS
    [Show full text]
  • Bioengineering Triacetic Acid Lactone Production in Yarrowia Lipolytica for Pogostone Synthesis
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis Yu, James; Landberg, Jenny Marie; Shavarebi, Farbod; Bilanchone, Virginia; Okerlund, Adam; Wanninayake, Umayangani; Zhao, Le; Kraus, George; Sandmeyer, Suzanne Published in: Biotechnology and Bioengineering Link to article, DOI: 10.1002/bit.26733 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Yu, J., Landberg, J. M., Shavarebi, F., Bilanchone, V., Okerlund, A., Wanninayake, U., Zhao, L., Kraus, G., & Sandmeyer, S. (2018). Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnology and Bioengineering, 115(9), 2383-2388. https://doi.org/10.1002/bit.26733 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Biotechnol Manuscript Author Bioeng. Author Manuscript Author manuscript; available in PMC 2019 November 14.
    [Show full text]
  • Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds Over Heterogeneous Catalysts
    Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts By Mei Chia A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) At the UNIVERSITY OF WISCONSIN-MADISON 2013 Date of final oral examination: 11th July 2013 The dissertation is approved by the following members of the Final Oral Committee: James A. Dumesic, Professor, Chemical and Biological Engineering Thomas F. Kuech, Professor, Chemical and Biological Engineering Manos Mavrikakis, Professor, Chemical and Biological Engineering Brian F. Pfleger, Assistant Professor, Chemical and Biological Engineering Dane Morgan, Associate Professor, Materials Science and Engineering i Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts Mei Chia Under the supervision of Professor James A. Dumesic At the University of Wisconsin-Madison The catalytic deoxygenation of biomass-derived compounds through selective C-O hydrogenolysis, catalytic transfer hydrogenation and lactonization, and decarboxylation to value- added chemicals over heterogeneous catalysts was examined under liquid phase reaction conditions. The reactions studied involve the conversion or production of heterocyclic compounds, specifically, cyclic ethers, lactones, and 2-pyrones. A bimetallic RhRe/C catalyst was found to be selective for the hydrogenolysis of secondary C-O bonds for a broad range cyclic ethers and polyols. Results
    [Show full text]
  • Renewable Feedstocks Towards a Sustainable Future for Polymers
    RENEWABLE FEEDSTOCKS TOWARDS A SUSTAINABLE FUTURE FOR POLYMERS A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY HUSSNAIN SAJJAD IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY THERESA M. REINEKE & WILLIAM B. TOLMAN, ADVISORS February 2021 Hussnain Sajjad © 2021 Acknowledgements I would first like to extend my sincere gratitude to my advisors, Profs. Theresa Reineke and Bill Tolman. Theresa, for always being a kind and encouraging mentor who offers unrestrictive freedom of exploration to her students; and Bill, for leading by example when it comes to thinking like a scientist and “digging deep” in order to find solutions to tough problems. Next, I would like to thank Prof. Tom Hoye, David Giles, Prof. Jane Wissinger, Letitia Yao, and Prof. Chris Ellison for their helpful feedback and mentorship, both in formal and informal ways, which has helped me immensely throughout this program. Graduate school would have felt incomplete without the friends and acquaintances I have made along the way. I especially am grateful to the past and present members of the Reineke and Tolman groups for their scientific and non-scientific conversations, encouragement and assistance during times when obstacles seem impassable, and for the countless positive memories I have gained over the years. I am grateful to all my friends, mentors, peers, and collaborators who have been a part of my scientific journey thus far. Furthermore, my family, especially my parents, has never wavered in their support for me. I thank them for the inspiration, encouragement, and motivation they have unconditionally provided to me.
    [Show full text]
  • Engineering Acetyl-Coa Metabolic Shortcut for Eco-Friendly Production of Polyketides Triacetic Acid Lactone in Yarrowia Lipolyti
    1 2 3 4 Engineering acetyl-CoA metabolic shortcut for eco-friendly 5 production of polyketides triacetic acid lactone in Yarrowia lipolytica 6 7 8 Huan Liu1,2, Monireh Marsafari 1, 3, Fang Wang2, Li Deng2,* and Peng Xu1,* 9 10 11 1Department of Chemical, Biochemical and Environmental Engineering, University of 12 Maryland, Baltimore County, Baltimore, MD 21250. 13 14 2College of Life Science and Technology, Beijing University of Chemical 15 Technology, Beijing, China. 16 17 3Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic 18 Republic of Iran 19 20 21 22 23 24 25 26 27 28 * Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049. E-mail address: [email protected] (PX) and [email protected] (LD). 1 29 Abstract 30 Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and 31 fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and 32 malonyl-CoA, represent a large family of biological compounds with diversified 33 bioactivity. Harnessing microbial bioconversion is considered as a feasible approach 34 to large-scale production of polyketides from renewable feedstocks. Most of the 35 current polyketide production platform relied on the lengthy glycolytic steps to 36 provide acetyl-CoA, which inherently suffers from complex regulation with 37 metabolically-costly cofactor/ATP requirements. Using the simplest polyketide 38 triacetic acid lactone (TAL) as a testbed molecule, we demonstrate that acetate uptake 39 pathway in oleaginous yeast (Yarrowia lipolytica) could function as an acetyl-CoA 40 shortcut to achieve metabolic optimality in producing polyketides.
    [Show full text]
  • Engineering Acetyl-Coa Metabolic Shortcut for Eco-Friendly Production
    bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Engineering acetyl-CoA metabolic shortcut for eco-friendly 5 production of polyketides triacetic acid lactone in Yarrowia lipolytica 6 7 8 Huan Liu1,2, Monireh Marsafari 1, 3, Fang Wang2, Li Deng2,* and Peng Xu1,* 9 10 11 1Department of Chemical, Biochemical and Environmental Engineering, University of 12 Maryland, Baltimore County, Baltimore, MD 21250. 13 14 2College of Life Science and Technology, Beijing University of Chemical 15 Technology, Beijing, China. 16 17 3Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic 18 Republic of Iran 19 20 21 22 23 24 25 26 27 28 * Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049. E-mail address: [email protected] (PX) and [email protected] (LD). 1 bioRxiv preprint doi: https://doi.org/10.1101/614131; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 29 Abstract 30 Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and 31 fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and 32 malonyl-CoA, represent a large family of biological compounds with diversified 33 bioactivity. Harnessing microbial bioconversion is considered as a feasible approach 34 to large-scale production of polyketides from renewable feedstocks.
    [Show full text]
  • Metabolic Engineering of Saccharomyces Cerevisiae for the Production of Triacetic Acid Lactone
    UC Irvine UC Irvine Previously Published Works Title Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Permalink https://escholarship.org/uc/item/0nj4v8k6 Authors Cardenas, Javier Da Silva, Nancy A Publication Date 2014-09-01 DOI 10.1016/j.ymben.2014.07.008 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Metabolic Engineering 25 (2014) 194–203 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone Javier Cardenas, Nancy A. Da Silva n Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 USA article info abstract Article history: Biobased chemicals have become attractive replacements for their fossil-fuel counterparts. Recent Received 15 May 2014 studies have shown triacetic acid lactone (TAL) to be a promising candidate, capable of undergoing Received in revised form chemical conversion to sorbic acid and other valuable intermediates. In this study, Saccharomyces 16 July 2014 cerevisiae was engineered for the high-level production of TAL by overexpression of the Gerbera hybrida Accepted 21 July 2014 2-pyrone synthase (2-PS) and systematic engineering of the yeast metabolic pathways. Pathway analysis Available online 30 July 2014 and a computational approach were employed to target increases in cofactor and precursor pools to Keywords: improve TAL synthesis. The pathways engineered include those for energy storage and generation, Saccharomyces cerevisiae pentose biosynthesis, gluconeogenesis, lipid biosynthesis and regulation, cofactor transport, and Triacetic acid lactone fermentative capacity.
    [Show full text]