Pathogenic Mechanisms Underlying X-Linked Charcot-Marie-Tooth Neuropathy (CMTX6) in Patients with a Pyruvate Dehydrogenase Kinase 3Mutation

Total Page:16

File Type:pdf, Size:1020Kb

Pathogenic Mechanisms Underlying X-Linked Charcot-Marie-Tooth Neuropathy (CMTX6) in Patients with a Pyruvate Dehydrogenase Kinase 3Mutation Neurobiology of Disease 94 (2016) 237–244 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Pathogenic mechanisms underlying X-linked Charcot-Marie-Tooth neuropathy (CMTX6) in patients with a pyruvate dehydrogenase kinase 3mutation Gonzalo Perez-Siles a,c,⁎,CarolynLya, Adrienne Grant a, Alexander P. Drew a, Eppie M. Yiu d,e,f, Monique M. Ryan d,e,f, David T. Chuang g, Shih-Chia Tso g, Garth A. Nicholson a,b,c,MarinaL.Kennersona,b,c,⁎ a Northcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, NSW, Australia b Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia c Sydney Medical School, University of Sydney, Sydney, NSW, Australia d Department of Neurology, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia e Neuroscience Research, Murdoch Childrens Research Institute, Melbourne, VIC, Australia f Department of Pediatrics, The University of Melbourne, VIC, Australia g Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA article info abstract Article history: Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. An X-linked form of Received 11 March 2016 CMT (CMTX6) is caused by a missense mutation (R158H) in the pyruvate dehydrogenase kinase isoenzyme 3 Revised 22 June 2016 (PDK3) gene. PDK3 is one of 4 isoenzymes that negatively regulate the activity of the pyruvate dehydrogenase Accepted 3 July 2016 complex (PDC) by reversible phosphorylation of its first catalytic component pyruvate dehydrogenase (designat- Available online 5 July 2016 ed as E1). Mitochondrial PDC catalyses the oxidative decarboxylation of pyruvate to acetyl CoA and links glycol- ysis to the energy-producing Krebs cycle. We have previously shown the R158H mutation confers PDK3 enzyme Keywords: fi R158H X-linked Charcot-Marie-Tooth neuropathy hyperactivity. In this study we demonstrate that the increased PDK3 activity in patient broblasts (PDK3 ) Pyruvate dehydrogenase kinase 3 leads to the attenuation of PDC through hyper-phosphorylation of E1 at selected serine residues. This hyper- Pyruvate dehydrogenase complex phosphorylation can be reversed by treating the PDK3R158H fibroblasts with the PDK inhibitor dichloroacetate Mitochondria (DCA). In the patient cells, down-regulation of PDC leads to increased lactate, decreased ATP and alteration of Patient fibroblasts the mitochondrial network. Our findings highlight the potential to develop specific drug targeting of the mutant Dichloroacetic acid PDK3 as a therapeutic approach to treating CMTX6. © 2016 Published by Elsevier Inc. 1. Introduction disease and the cellular processes of the peripheral nerve degeneration. However, there are still no effective treatment therapies for CMT. Hereditary motor and sensory disorders of the peripheral nerve The identification of mutations in the pyruvate dehydrogenase ki- form one of the most common groups of human genetic diseases, collec- nase isoenzyme 3 (PDK3) gene as a cause of an X-linked dominant tively called Charcot–Marie–Tooth (CMT) neuropathy. CMT is a clinical- form of CMT (CMTX6) (Kennerson et al., 2013)(Kennerson et al., ly and genetically heterogeneous disorder affecting 1 in 2500 people 2016) has added to the growing list of CMT genes related to the biology (Fowler et al., 1997). Clinical features include progressive weakness of mitochondria (Pareyson et al., 2015) suggesting that pathways lead- and atrophy of distal muscles, high arched feet (pes cavus) and loss of ing to mitochondrial deficits may be a common theme in inherited axo- deep tendon reflexes. Mutations in N80 genes cause CMT and related nal neuropathies. The nuclear-encoded pyruvate dehydrogenase disorders. The diversity of the cellular and molecular function of pro- complex (PDC) is located in the mitochondrial matrix and catalyses teins implicated in CMT is providing insight to the pathophysiology of the conversion of pyruvate to acetyl CoA, a key regulatory step of the en- ergy-producing Krebs cycle. The mammalian PDC is a 9.5 million-Dalton protein machine comprising multiple copies of pyruvate dehydroge- nase (E1), dihydrolipoyl transacetylase (E2), dihydrolipoamide dehy- ⁎ Corresponding authors at: Northcott Neuroscience Laboratory, ANZAC Research drogenase (E3), and the E3-binding protein (E3BP) (Reed, 2001). PDC Institute, University of Sydney, Concord, NSW, Australia. is regulated through reversible phosphorylation of the E1 subunit of E-mail addresses: [email protected] (G. Perez-Siles), [email protected] (M.L. Kennerson). PDC by the four PDK isoenzymes (PDK1 to PDK4) that act to inactivate Available online on ScienceDirect (www.sciencedirect.com). the PDC (Korotchkina and Patel, 1995) and dephosphorylation by http://dx.doi.org/10.1016/j.nbd.2016.07.001 0969-9961/© 2016 Published by Elsevier Inc. 238 G. Perez-Siles et al. / Neurobiology of Disease 94 (2016) 237–244 pyruvate dehydrogenase phosphatases (PDPs) restores PDC activity detection at 450 nm. Briefly, 1 × 106 fibroblasts were trypsinized and re- (Huang et al., 1998). suspended in PBS containing proteinase inhibitors (cOmplete, Mini Pro- Previously we have shown that the R158H mutation confers PDK3 tease Inhibitor, Roche). After protein quantification, the concentration hyperactivity and binds with stronger affinity than its wild-type coun- was adjusted to 10 mg/ml using PBS. Intact functional PDC was solubi- terpart to the inner-lipoyl (L2) domain of the E2 component of PDC lized by adding a detergent (1:9 volumes) provided in the kit. Using (Kennerson et al., 2013). In this study, we further explore the down- the 1XBuffer, sample concentration was adjusted to 1 mg/ml and pro- stream consequences of the R158H mutation, using primary fibroblasts tein (200 μg per well) was assayed in triplicate and incubated at RT (PDK3R158H) cultured from a CMTX6 patient. We demonstrate the im- for 3 h. Wells were washed twice with 1× Stabilizer reagent and the pact of the PDK3 mutation on the phosphorylation status of the E1 sub- Assay solution (200 μl) was added to the wells. Using an EnSpire Multi- unit, its consequences on the PDC activity as well as the subsequent mode Plate Reader (PerkinElmer) the assay absorbance at 450 nm was biochemical outcomes and the impact on mitochondrial morphology measured at RT for 30 min at 30 s intervals. in the PDK3R158H cells. 2.5. Lactate production assay 2. Methods Prior to the experiment (72 h), 1 × 105 cells per well were seeded in 2.1. Fibroblasts culture a P6 well culture plate. Lactate production was evaluated using the Lac- tate Colorimetric Assay Kit II (BioVision). On the day of the experiment, Patients participating in this study provided written consent accord- media containing 10% (v/v) FBS was replaced with DMEM and after a ing to protocols approved by the Sydney Local Health District Human 4 h incubation media (1 ml) was collected and kept on ice. A dilution Ethics Review Committee, Concord Repatriation General Hospital, Syd- (1 in 10) in Assay Buffer (50 μl) plus 50 μl of Reaction Mix was added fi ney, Australia (reference number: HREC/11/CRGH/105). Primary bro- to the ELISA plate. The reaction was incubated for 30 min at RT. The ab- blasts were cultured from patient skin biopsies and maintained with sorbance at 450 nm was measured with an EnSpire Multimode Plate fi broblast cell culture medium: DMEM (Gibco, Life technologies) sup- Reader (PerkinElmer). Levels of lactate were corrected per mg of pro- plemented with 10% (v/v) fetal bovine serum (SAFC Biosciences), 1% tein. Protein concentration was determined using the Pierce BCA Pro- (v/v) Penicillin Streptomycin (Gibco, Life technologies) and 1% (v/v) tein Assay Kit (ThermoScientific). L-glutamine (Gibco, Life technologies) and maintained at 37 °C in hu- midified air and 5% CO . 2 2.6. ATP assay 2.2. Real-time (RT) quantitative PCR Prior to the experiment (24 h), 2 × 104 cells per well were plated in P96 well plates. Cellular ATP was measured using an ATPlite assay kit RNA was extracted from fibroblasts using the RNeasy mini kit (PerkinElmer, Massachusetts, UK). Briefly, mammalian cell lysis solu- (Qiagen). Reverse transcribed template was prepared using the High- tion (50 μl) was added to 100 μl cell suspension per well and the plate Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Quanti- incubated for 10 min. Substrate solution (50 μl) was added to the cell ly- tative RT-PCR was performed using the PDK3-specificTaqManGeneEx- sate and incubated in the absence of light for 10 min. Luminescence was pression Assay Hs00178440_m1 (Applied Biosystems) and run on a measured on an EnSpire Multimode Plate Reader (PerkinElmer). Data is StepOnePlus™ real-time PCR System (Applied Biosystems). The com- represented as the nmoles of ATP detected for the 2 × 104 cells assayed. parative 2−ΔΔCt method (Schmittgen and Livak, 2008) was used to mea- The average of the signal was determined for the 8 replicates plated for sure the relative quantitation of PDK3 expression in affected and control each cell line. individuals. 18S (Hs99999901_s1; Applied Biosystems) was used as the housekeeping gene. 2.7. Assessment of mitochondrial morphology 2.3. Immunofluorescence Prior to the experiment (48 h) 3 × 104 cells per well were plated on Control and patient fibroblasts were incubated with 200 nM cover slips and placed in P24 well plates. The mitochondrial network in fi MitoTracker Red CMX Red (Invitrogen) to visualize mitochondrial control and patient broblasts was stained with 200 nM MitoTracker fi structures. Cells were fixed with 4% formaldehyde, permeabilized in Red CMX Red for 30 min. Cells were xed and mounted as previously fi phosphate-buffered saline (PBS) containing 0.3% (v/v) Triton X-100 described. N = 30 individual well de ned cells were analyzed per sam- and blocked in 3% (w/v) bovine serum albumin (BSA). Cells were incu- ple. Using the image processing package Fiji (Schindelin et al., 2012), fi bated with affinity-purified anti-pSer293 (phosphorylation site 1), anti- images were binarised by conversion to 8 bit image types.
Recommended publications
  • Attenuation of Ganglioside GM1 Accumulation in the Brain of GM1 Gangliosidosis Mice by Neonatal Intravenous Gene Transfer
    Gene Therapy (2003) 10, 1487–1493 & 2003 Nature Publishing Group All rights reserved 0969-7128/03 $25.00 www.nature.com/gt RESEARCH ARTICLE Attenuation of ganglioside GM1 accumulation in the brain of GM1 gangliosidosis mice by neonatal intravenous gene transfer N Takaura1, T Yagi2, M Maeda2, E Nanba3, A Oshima4, Y Suzuki5, T Yamano1 and A Tanaka1 1Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan; 2Department of Neurobiology and Anatomy, Osaka City University Graduate School of Medicine, Osaka, Japan; 3Gene Research Center, Tottori University, Yonago, Japan; 4Department of Pediatrics, Takagi Hospital, Saitama, Japan; and 5Pediatrics, Clinical Research Center, Nasu Institute for Developmental Disabilities, International University of Health and Welfare, Ohtawara, Japan A single intravenous injection with 4 Â 107 PFU of recombi- ganglioside GM1 was above the normal range in all treated nant adenovirus encoding mouse b-galactosidase cDNA to mice, which was speculated to be the result of reaccumula- newborn mice provided widespread increases of b-galacto- tion. However, the values were still definitely lower in most of sidase activity, and attenuated the development of the the treated mice than those in untreated mice. In the disease including the brain at least for 60 days. The b- histopathological study, X-gal-positive cells, which showed galactosidase activity showed 2–4 times as high a normal the expression of exogenous b-galactosidase gene, were activity in the liver and lung, and 50 times in the heart. In the observed in the brain. It is noteworthy that neonatal brain, while the activity was only 10–20% of normal, the administration via blood vessels provided access to the efficacy of the treatment was distinct.
    [Show full text]
  • Improvement of Spontaneous Alternation Behavior Deficit by Activation Ofα4β2 Nicotinic Acetylcholine Receptor Signaling in the Ganglioside GM3-Deficient Mice
    Biomedical Research 34 (4) 189-195, 2013 Improvement of spontaneous alternation behavior deficit by activation of α4β2 nicotinic acetylcholine receptor signaling in the ganglioside GM3- deficient mice 1 1 2 1 2 1 Kimie NIIMI , Chieko NISHIOKA , Tomomi MIYAMOTO , Eiki TAKAHASHI , Ichiro MIYOSHI , Chitoshi ITAKURA , 3, 4 and Tadashi YAMASHITA 1 Riken Brain Science Institute, Saitama 351-0198, Japan; 2 Graduate School of Medical Sciences, Nagoya City University, Nagoya 467- 8601, Japan; 3 Graduate School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan; and 4 World Class University Program, Kyungpook National University School of Medicine, Daegu, South Korea (Received 13 May 2013; and accepted 17 June 2013) ABSTRACT We have reported that in ganglioside GM3-deficient (GM3−/−) mice, spontaneous alternation be- havior assessed by a Y-maze task was significantly lower, and total arm entries were significantly higher than in wild-type mice. The objective of the present study was to examine the role of nico- tinic acetylcholine receptor (nAChR) signaling in impairment of spontaneous alternation behavior of GM3−/− mice. Nicotine treatment (0.3, 1.0 mg/kg, s.c.) dose dependently improved the sponta- neous alternation deficit without affecting total arm entries in GM3−/− mice. The nicotine-induced (1.0 mg/kg, s.c.) improvement was significantly abolished by the nAChR antagonist mecamyla- mine (1.0 mg/kg, i.p.). The α4β2 nAChR antagonist dihydro-β-erythroidine (2.5, 10.0 mg/kg, i.p.) dose dependently counteracted the nicotine-induced improvement of spontaneous alternation in GM3−/− mice, whereas the α7 nAChR antagonist methyllycaconitine (2.5, 10.0 mg/kg, i.p.) did not.
    [Show full text]
  • Nicotinic Acetylcholine Receptor Signaling in Neuroprotection
    Akinori Akaike · Shun Shimohama Yoshimi Misu Editors Nicotinic Acetylcholine Receptor Signaling in Neuroprotection Nicotinic Acetylcholine Receptor Signaling in Neuroprotection Akinori Akaike • Shun Shimohama Yoshimi Misu Editors Nicotinic Acetylcholine Receptor Signaling in Neuroprotection Editors Akinori Akaike Shun Shimohama Department of Pharmacology, Graduate Department of Neurology, School of School of Pharmaceutical Sciences Medicine Kyoto University Sapporo Medical University Kyoto, Japan Sapporo, Hokkaido, Japan Wakayama Medical University Wakayama, Japan Yoshimi Misu Graduate School of Medicine Yokohama City University Yokohama, Kanagawa, Japan ISBN 978-981-10-8487-4 ISBN 978-981-10-8488-1 (eBook) https://doi.org/10.1007/978-981-10-8488-1 Library of Congress Control Number: 2018936753 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Framework for the Development of Structured Cancer Pathology Reporting Protocols
    Standards for Pathology Informatics in Australia (SPIA) Reporting Terminology and Codes Immunopathology (v3.0) Superseding and incorporating the Australian Pathology Units and Terminology Standards and Guidelines (APUTS) ISBN: Pending State Health Publication Number (SHPN): Pending Online copyright © RCPA 2017 This work (Standards and Guidelines) is copyright. You may download, display, print and reproduce the Standards and Guidelines for your personal, non- commercial use or use within your organisation subject to the following terms and conditions: 1. The Standards and Guidelines may not be copied, reproduced, communicated or displayed, in whole or in part, for profit or commercial gain. 2. Any copy, reproduction or communication must include this RCPA copyright notice in full. 3. No changes may be made to the wording of the Standards and Guidelines including commentary, tables or diagrams. Excerpts from the Standards and Guidelines may be used. References and acknowledgments must be maintained in any reproduction or copy in full or part of the Standards and Guidelines. Apart from any use as permitted under the Copyright Act 1968 or as set out above, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to RCPA, 207 Albion St, Surry Hills, NSW 2010, Australia. This material contains content from LOINC® (http://loinc.org). The LOINC table, LOINC codes, LOINC panels and forms file, LOINC linguistic variants file, LOINC/RSNA Radiology Playbook, and LOINC/IEEE Medical Device Code Mapping Table are copyright © 1995-2016, Regenstrief Institute, Inc. and the Logical Observation Identifiers Names and Codes (LOINC) Committee and is available at no cost under the license at http://loinc.org/terms-of-use.” This material includes SNOMED Clinical Terms® (SNOMED CT®) which is used by permission of the International Health Terminology Standards Development Organisation (IHTSDO®).
    [Show full text]
  • Autoantibodies and Anti-Microbial Antibodies
    bioRxiv preprint doi: https://doi.org/10.1101/403519; this version posted August 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Autoantibodies and anti-microbial antibodies: Homology of the protein sequences of human autoantigens and the microbes with implication of microbial etiology in autoimmune diseases Peilin Zhang, MD., Ph.D. PZM Diagnostics, LLC Charleston, WV 25301 Correspondence: Peilin Zhang, MD., Ph.D. PZM Diagnostics, LLC. 500 Donnally St., Suite 303 Charleston, WV 25301 Email: [email protected] Tel: 304 444 7505 1 bioRxiv preprint doi: https://doi.org/10.1101/403519; this version posted August 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Autoimmune disease is a group of diverse clinical syndromes with defining autoantibodies within the circulation. The pathogenesis of autoantibodies in autoimmune disease is poorly understood. In this study, human autoantigens in all known autoimmune diseases were examined for the amino acid sequences in comparison to the microbial proteins including bacterial and fungal proteins by searching Genbank protein databases. Homologies between the human autoantigens and the microbial proteins were ranked high, medium, and low based on the default search parameters at the NCBI protein databases. Totally 64 human protein autoantigens important for a variety of autoimmune diseases were examined, and 26 autoantigens were ranked high, 19 ranked medium to bacterial proteins (69%) and 27 ranked high and 16 ranked medium to fungal proteins (66%) in their respective amino acid sequence homologies.
    [Show full text]
  • An Increased Plasma Level of Apociii-Rich Electronegative High-Density Lipoprotein May Contribute to Cognitive Impairment in Alzheimer’S Disease
    biomedicines Article An Increased Plasma Level of ApoCIII-Rich Electronegative High-Density Lipoprotein May Contribute to Cognitive Impairment in Alzheimer’s Disease 1, 1,2,3, 2 4 Hua-Chen Chan y , Liang-Yin Ke y , Hsiao-Ting Lu , Shih-Feng Weng , Hsiu-Chuan Chan 1, Shi-Hui Law 2, I-Ling Lin 2 , Chuan-Fa Chang 2,5 , Ye-Hsu Lu 1,6, Chu-Huang Chen 7 and Chih-Sheng Chu 1,6,8,* 1 Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; [email protected] (H.-C.C.); [email protected] (L.-Y.K.); [email protected] (H.-C.C.); [email protected] (Y.-H.L.) 2 Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; [email protected] (H.-T.L.); [email protected] (S.-H.L.); [email protected] (I.-L.L.); aff[email protected] (C.-F.C.) 3 Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan 4 Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; [email protected] 5 Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan 6 Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan 7 Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA; [email protected] 8 Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan * Correspondence: [email protected]; Tel.: +886-73121101 (ext.
    [Show full text]
  • Autoantibodies Diagnostic Tools for Autoimmune Disorders
    Autoantibodies Diagnostic tools for autoimmune disorders What are autoantibodies? Despite these limitations, autoantibodies are a valuable tool for the diagnosis (when considered with other clinical Autoantibodies bind non-foreign structures within us and have and laboratory information) and monitoring of many been found in most well-defined autoimmune disorders. They autoimmune disorders. also occur in other disorders with an inflammatory component and even in some malignant disorders as paraneoplastic phenomena. How is tissue injury caused in With a few important exceptions, autoantibodies have no direct autoimmune disorders? Are role in pathogenesis and their main value is as a ‘marker’ adding autoantibodies always pathological? weight to a clinical diagnoses. Much tissue damage in autoimmune diseases is probably Circulating forms of autoantibodies may be detected by mediated by T cells and their effector mechanisms, rather than assays on serum. Tissue-bound antibodies may also be by B cells and their products, autoantibodies. Systemic lupus detected by direct immunofluorescence studies of non-fixed erythematosus and other connective tissue disorders are biopsy specimens. characterised by polyclonal self-reactive B cell expansions. Normal immune system functions include the recognition of, and Do autoantibodies ever occur naturally, discrimination between, self and non-self targets and unleashing without clinical associations? of effector mechanisms, such as complement proteins, cytotoxic T cells, cytokines and other phagocytic cells onto non-self Low-level autoantibodies occur naturally and more commonly in targets. persons who are older, female, have chronic diseases and often a family history of autoimmune abnormalities. These natural Autoantibody production is a consequence of ongoing autoantibodies occur in low concentrations and have weak recognition of self targets by both T and B cells.
    [Show full text]
  • Figure S1. GO Analysis of Genes in Glioblastoma Cases That Showed Positive and Negative Correlations with TCIRG1 in the GSE16011 Cohort
    Figure S1. GO analysis of genes in glioblastoma cases that showed positive and negative correlations with TCIRG1 in the GSE16011 cohort. (A‑C) GO‑BP, GO‑CC and GO‑MF terms of genes that showed positive correlations with TCIRG1, respec‑ tively. (D‑F) GO‑BP, GO‑CC and GO‑MF terms of genes that showed negative correlations with TCIRG1. Red nodes represent gene counts, and black bars represent negative 1og10 P‑values. TCIRG1, T cell immune regulator 1; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function. Table SI. Genes correlated with T cell immune regulator 1. Gene Name Pearson's r ARPC1B Actin‑related protein 2/3 complex subunit 1B 0.756 IL4R Interleukin 4 receptor 0.695 PLAUR Plasminogen activator, urokinase receptor 0.693 IFI30 IFI30, lysosomal thiol reductase 0.675 TNFAIP3 TNF α‑induced protein 3 0.675 RBM47 RNA binding motif protein 47 0.666 TYMP Thymidine phosphorylase 0.665 CEBPB CCAAT/enhancer binding protein β 0.663 MVP Major vault protein 0.660 BCL3 B‑cell CLL/lymphoma 3 0.657 LILRB3 Leukocyte immunoglobulin‑like receptor B3 0.656 ELF4 E74 like ETS transcription factor 4 0.652 ITGA5 Integrin subunit α 5 0.651 SLAMF8 SLAM family member 8 0.647 PTPN6 Protein tyrosine phosphatase, non‑receptor type 6 0.641 RAB27A RAB27A, member RAS oncogene family 0.64 S100A11 S100 calcium binding protein A11 0.639 CAST Calpastatin 0.638 EHBP1L1 EH domain‑binding protein 1‑like 1 0.638 LILRB2 Leukocyte immunoglobulin‑like receptor B2 0.629 ALDH3B1 Aldehyde dehydrogenase 3 family member B1 0.626 GNA15 G protein
    [Show full text]
  • Interaction of Cholera Toxin and Membrane GM1 Ganglioside of Small Intestine
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 7, pp. 2520-2524, July 1975 Biochemistry Interaction of cholera toxin and membrane GM1 ganglioside of small intestine (mucosal receptors/[3HJGMl ganglioside/ Vibrio cholerae sialidase/diarrhea) JAN HOLMGREN*, IVAR LONNROTH*, JAN-ERIC MANSSONt, AND LARS SVENNERHOLMt * Institute of Medical Microbiology and t Department of Neurochemistry, University of G~teborg, Goteborg, Sweden Communicated by Saul Roseman, March 31, 1975 ABSTRACT Ganglioside GM, was isolated from the ther evidence for the function of small intestinal mucosa of man, receptor GM, is indicated pig, and beef and amounted by the finding that incubation of fat cells with GM, in- to 0.1, 2.0, and 43 nmol per g fresh weight, respectively. creased These differences in GMI content were associated with a the toxin binding ability of the cells and also the li- quantitatively differing ability of the mucosal cells to bind polytic response to the toxin, which suggested that the exog- cholera toxin. Human cells bound about 15,000 toxin mole- enous ganglioside was incorporated as functional receptor in cules when saturated with the toxin, porcine cells 120,000, the cell membrane and bovine (13). cells 2,600,000 molecules. The association con- In the present study, we investigate the binding properties stant (KA) of the cholera toxin binding was, for cells of all of cholera to three species, about 109 liters/mol. Exogenously added GM1 toxin intestinal mucosa cells of various species, ganglioside was incorporated in intestinal mucosal cells as including man, and examine how these properties relate to well as in intact rabbit small bowel.
    [Show full text]
  • The Neuroprotective Role of the GM1 Oligosaccharide, Ii3neu5ac-Gg4, In
    Molecular Neurobiology (2019) 56:6673–6702 https://doi.org/10.1007/s12035-019-1556-8 The Neuroprotective Role of the GM1 Oligosaccharide, 3 II Neu5Ac-Gg4, in Neuroblastoma Cells Elena Chiricozzi1 & Margherita Maggioni1 & Erika di Biase1 & Giulia Lunghi1 & Maria Fazzari1 & Nicoletta Loberto 1 & Maffioli Elisa2 & Francesca Grassi Scalvini2 & Gabriella Tedeschi 2,3 & Sandro Sonnino1 Received: 10 January 2019 /Accepted: 13 March 2019 /Published online: 26 March 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract 3 Recently, we demonstrated that the GM1 oligosaccharide, II Neu5Ac-Gg4 (OligoGM1), administered to cultured murine Neuro2a neuroblastoma cells interacts with the NGF receptor TrkA, leading to the activation of the ERK1/2 downstream pathway and to cell differentiation. To understand how the activation of the TrkA pathway is able to trigger key biochemical signaling, we performed a proteomic analysis on Neuro2a cells treated with 50 μM OligoGM1 for 24 h. Over 3000 proteins were identified. Among these, 324 proteins were exclusively expressed in OligoGM1-treated cells. Interestingly, several proteins expressed only in OligoGM1-treated cells are involved in biochemical mechanisms with a neuroprotective potential, reflecting the GM1 neuroprotective effect. In addition, we found that the exogenous administration of OligoGM1 reduced the cellular oxidative stress in Neuro2a cells and conferred protection against MPTP neurotoxicity. These results confirm and reinforce the idea that the molecular mechanisms underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, suggesting the activation of a positive signaling starting at plasma membrane level. Keywords GM1 ganglioside . GM1 oligosaccharide chain . TrkA neurotrophin receptor . Plasma membrane signaling . Neuroprotection .
    [Show full text]
  • Relationship Between Ganglioside Expression and Anti-Cancer Effects of the Monoclonal Antibody Against Epithelial Cell Adhesion Molecule in Colon Cancer
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 43, No. 12, 693-701, December 2011 Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer Dong Hoon Kwak1, Jae-Sung Ryu2, was investigated by high-performance thin-layer Chang-Hyun Kim3, Kisung Ko2, chromatography. The results demonstrated that ex- Jin Yeul Ma1, Kyung-A Hwang4 pression of GM1 and GD1a significantly increased in and Young-Kug Choo2,5 the ability of anti-EpCAM to inhibit cell growth in SW620 cells. Anti-EpCAM mAb treatment increased the ex- 1Center for Herbal Medicine Improvement Research pression of anti-apoptotic proteins such as Bcl-2, but Korea Institute of Oriental Medicine the expression of pro-apoptotic proteins Bax, TNF-α, Daejeon 305-811, Korea caspase-3, cleaved caspase-3, and cleaved caspase-8 2Department of Biological Science were unaltered. We observed that anti-EpCAM mAb College of Natural Sciences significantly inhibited the growth of colon tumors, as Institute of Biotechnology determined by a decrease in tumor volume and weight. Wonkwang University The expression of anti-apoptotic protein was inhibited Iksan 570-749, Korea by treatment with anti-EpCAM mAb, whereas the ex- 3Dong-guk University Research Institutes of Biotechnology pression of pro-apoptotic proteins was increased. Medical Science Research Center These results suggest that GD1a and GM1 were closely Goyang 410-773, Korea related to anticancer effects of anti-EpCAM mAb. In 4Department of Agrofood Resources light of these results, further clinical investigation National Academy of Agricultural Science, RDA should be conducted on anti-EpCAM mAb to de- Suwon 441-853, Korea termine its possible chemopreventive and/or ther- 5Corresponding author: Tel, 82-63-850-6087; apeutic efficacy against human colon cancer.
    [Show full text]
  • Metabolism of Human Pluripotent Stem Cells and Differentiated Cells For
    Tanosaki et al. Inflammation and Regeneration (2021) 41:5 Inflammation and Regeneration https://doi.org/10.1186/s41232-021-00156-9 REVIEW Open Access Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: a focus on cardiomyocytes Sho Tanosaki1,2, Shugo Tohyama1* , Yoshikazu Kishino1, Jun Fujita1 and Keiichi Fukuda1 Abstract Pluripotent stem cells (PSCs) exhibit promising application in regenerative therapy, drug discovery, and disease modeling. While several protocols for differentiating somatic cells from PSCs exist, their use is limited by contamination of residual undifferentiated PSCs and immaturity of differentiated somatic cells. The metabolism of PSCs differs greatly from that of somatic cells, and a distinct feature is required to sustain the distinct properties of PSCs. To date, several studies have reported on the importance of metabolism in PSCs and their derivative cells. Here, we detail advancements in the field, with a focus on cardiac regenerative therapy. Keywords: Metabolism, Pluripotent stem cells, Cardiomyocytes, Regenerative therapy Background review details the current metabolic understanding of Human PSCs (hPSCs) are capable of self-renewal, prolif- hPSCs and their derivatives, and compares them to eration, and differentiation into cells of the three germ mouse PSCs (mPSCs) and cancer cells to clarify similar- layers, and show promising application in drug discov- ities and differences among these cells. ery, disease modeling, and regenerative therapy for diseases resistant to conventional medical therapies. Effective regenerative therapy is contingent on certain Metabolism of undifferentiated hPSCs considerations, including the establishment of human- Glucose induced PSCs (hiPSCs) from somatic cells, expansion of Rapidly proliferating cells, such as cancer cells, show ac- hiPSCs, cell differentiation, removal of residual undiffer- tivated glycolysis even under sufficient oxygen.
    [Show full text]