LAC 78 Scale 1:1,000,000 Mercator Projection

Total Page:16

File Type:pdf, Size:1020Kb

LAC 78 Scale 1:1,000,000 Mercator Projection 10˚ 12˚ 14˚ 16˚ 18˚ 20˚ 22˚ 24˚ 26˚ 28˚ 30˚ 0˚ . 0˚ Lade B . Theon Senior A Lade A . Delambre J . Hypatia E R imae . MOLTKE H THEON SENIOR ypatia Lade D . Hypatia C . Delambre H Delambre F . Moltke A . Moltke B . Censorinus K Delambre D . LADE . Theon Senior C . Torricelli G . Lade X . Delambre B Lade E DELAMBRE -2˚ . Hypatia R -2˚ . Theon Junior B . THEON JUNIOR Theon Junior C . Torricelli B . Alfraganus G . Hypatia G Torricelli C . Saunder C . Alfraganus A Taylor AB Hypatia D . SINUS . Torricelli H . Torricelli L . Alfraganus F . Torricelli J -4˚ . -4˚ . Saunder T Saunder A . Alfraganus D . Torricelli K Taylor A HYPATIA . Hypatia F . Torricelli T Taylor B . Alfraganus H Torricelli F . Hypatia H . Alfraganus E . Hypatia B TORRICELLI Torricelli A . Hypatia A . Alfraganus K Hypatia M Torricelli R Taylor D . TAYLOR . ALFRAGANUS . Taylor C . Alfraganus M . Anděl K -6˚ -6˚ . Taylor E . Alfraganus C . Torricelli N . Zöllner J ASPERITATIS . Zöllner K . Torricelli P Anděl H . Dollond W . Theophilus E LINDSAY . Zöllner H . Zöllner A . Theophilus G . Dollond U . Zöllner G . Anděl J Zöllner F Dollond B . Theophilus W . Dollond V ZÖLLNER -8˚ Theophilus F -8˚ For the following names in the Apollo 16 landing . Dollond D site area, see the Apollo 16 Traverses map 78D2S2: Anděl F . Baby Ray, Cinco, End, Flag, Gator, Halfway, Zöllner D . Dollond Y Kiva, North Ray, Palmetto, Plum (not shown on map), Ravine, Smoky Mountains, South Ray, Spook, Spot, Stone Mountain, Stubby, Trap, and Wreck . Dollond L . Zöllner E + . Anděl C Apollo 16 Landing Site Kant G . Kant H . Dollond T Kant C . Mädler A Anděl M Kant B Kant N -10˚ . Mons -10˚ . Dollond M Penck . Anděl N . Dollond E ANDĚL . Kant Z . DOLLOND . Theophilus B KANT Anděl A . Anděl D . Kant P . Anděl G . Descartes C MÄDLER . Ritchey N . Anděl T . Kant T Anděl S . Kant D . Kant S THEOPHILUS Anděl P DESCARTES IBN-RUSHD -12˚ . Anděl E . Kant O -12˚ . Descartes A . Abulfeda S . Ritchey J . Anděl W . Cyrillus C Abulfeda W . Theophilus K . Abulfeda C . Abulfeda R . Abulfeda Y Abulfeda Q . Abulfeda U . Kant Q . Tacitus K CYRILLUS .Shioli Tacitus D . Tacitus C . Cyrillus A MARE ABULFEDA Tacitus E . Tacitus O -14˚ Tacitus B . -14˚ . Abulfeda L . Tacitus M Abulfeda B . Tacitus L . Tacitus S Beaumont L . Abulfeda Z . Abulfeda BA Abulfeda T . Abulfeda K . Abulfeda X . Tacitus J NECTARIS . Abulfeda N Catena Abulfeda Cyrillus F . Abulfeda J . Abulfeda P Abulfeda O . Cyrillus G . Almanon K . Almanon F Tacitus X . TACITUS Cyrillus E . -16˚ . Abulfeda F . Almanon C -16˚ 10˚ 12˚ 14˚ 16˚ 18˚ 20˚ 22˚ 24˚ 26˚ 28˚ 30˚ LAC 78 Scale 1:1,000,000 Mercator Projection Gazetteer of Planetary Nomenclature home page: http://planetarynames.wr.usgs.gov/ Image credit: NASA/GSFC/ASU Date of Last Nomenclature Update: 08/12/2019.
Recommended publications
  • B. Apollo 16 Regional Geologic Setting
    B. APOLLO 16REGIONAL GEOLOGIC SETTING By CARROLL ANN HODGES CONTENTS Page Geography 6 Geologic description of Cayley plains and Descartes mountains 6 Relation in time and space to basins and craters 8 ILLUSTRATIONS Page FIGURE 1. Composite photograph of the lunar near side showing geographic features and multiring basins 7 2. Photographic mosaic of Apollo 16 landing site and vicinity 8 GEOGRAPHY Soderblom and Boyce,1972). The type area of the Cayley Formation is east of the crater Cayley, north of Apollo 16 landed at approximately 15”30’ E., 9” S. on the landing site (Morris and Wilhelms, 1967); the the relatively level Cayley plains, adjacent to the rug- name was extended to the apparently similar plains ged Descartes mountains (Milton, 1972; Hodges, material at the Apollo 16 site (Milton, 1972; Hodges, 1972a). Approximately 70 km east is the west-facing 1972a). These materials were presumed to be represen- escarpment of the Kant plateau, part of the uplifted tative of the widespread photogeologic unit, Imbrian third ring of the Nectaris basin and topographically light plains, which covers about 5 percent of the lunar the highest area on the lunar near side. With respect to highlands surface (Wilhelms and McCauley, 1971; the centers of the three best-developed multiringed Howard and others, 1974). Characteristics include rel- basins, the site is about 600 km west of Nectaris, 1,600 atively level surfaces, intermediate albedo, and nearly km southeast of Imbrium, and 3,500 km east-northeast identical crater size-frequency distributions. of Orientale. The nearest mare materials are in The plains were first interpreted as smooth facies of Tranquillitatis, about 300 km north (fig.1).
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Apollo 12 Photography Index
    %uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII.
    [Show full text]
  • Facts & Features Lunar Surface Elevations Six Apollo Lunar
    Greek Mythology Quadrants Maria & Related Features Lunar Surface Elevations Facts & Features Selene is the Moon and 12 234 the goddess of the Moon, 32 Diameter: 2,160 miles which is 27.3% of Earth’s equatorial diameter of 7,926 miles 260 Lacus daughter of the titans 71 13 113 Mare Frigoris Mare Humboldtianum Volume: 2.03% of Earth’s volume; 49 Moons would fit inside Earth 51 103 Mortis Hyperion and Theia. Her 282 44 II I Sinus Iridum 167 125 321 Lacus Somniorum Near Side Mass: 1.62 x 1023 pounds; 1.23% of Earth’s mass sister Eos is the goddess 329 18 299 Sinus Roris Surface Area: 7.4% of Earth’s surface area of dawn and her brother 173 Mare Imbrium Mare Serenitatis 85 279 133 3 3 3 Helios is the Sun. Selene 291 Palus Mare Crisium Average Density: 3.34 gm/cm (water is 1.00 gm/cm ). Earth’s density is 5.52 gm/cm 55 270 112 is often pictured with a 156 Putredinis Color-coded elevation maps Gravity: 0.165 times the gravity of Earth 224 22 237 III IV cresent Moon on her head. 126 Mare Marginis of the Moon. The difference in 41 Mare Undarum Escape Velocity: 1.5 miles/sec; 5,369 miles/hour Selenology, the modern-day 229 Oceanus elevation from the lowest to 62 162 25 Procellarum Mare Smythii Distances from Earth (measured from the centers of both bodies): Average: 238,856 term used for the study 310 116 223 the highest point is 11 miles.
    [Show full text]
  • CIS465 Lab Assignment 2 Creating a Broadcasting Presentation of Apollo
    CIS465 Lab Assignment 2 SS Chung Creating a Broadcasting Presentation of Apollo 11 Launch Using SMIL (Synchronized Multimedia Integration Language) Apollo 17, the last mission to the moon, traveled further from the Lunar Module than any other mission; the trip took over an hour at an average speed of about 10 kilometers per hour. It was not possible to send television when the Lunar Rover was in motion, and this was the only flight in which the Lunar Rover carried no motion picture camera. The trip was therefore documented in only two ways: • Recorded radio conversations between the two astronauts on the Moon and another astronaut in mission control in Houston. • 140 photographs, about one every 30 seconds, taken by the astronaut that was not driving. In lab2, you simulate this broadcasting method of Apollo 17 with the radio audio data and a series of image pictures taken from the Apollo 11 Launch moments from NASA to broadcast the Apollo 11 Launch. Implement your own a Broadcasting Presentation of Apollo 11 Launch in SMIL (Synchronized Multimedia Integration Language) using given the audio and images data in sequences. 1. Create your presentation layout as given in the page 15 in the Lecture Notes on SMIL at http://eecs.csuohio.edu/~sschung/CIS465/SMIL-jun00W3Tutorial.pdf 2. In the layout, make V-remote with 3. Play a video and an audio together in the region with id = V-main with your Video and Audio files for 15 second and then display the anchorman picture in the V-main region (you can copy the picture of the anchorman in the lecture slide) 4.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • A Complete Bibliography of Publications in Journal for the History of Astronomy
    A Complete Bibliography of Publications in Journal for the History of Astronomy Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 10 May 2021 Version 1.28 Title word cross-reference $8.95 [Had84]. $87 [CWW17]. $89.95 [Gan15]. 8 = 1;2;3 [Cov15]. $90 [Ano15f]. $95 [Swe17c]. c [Kin87, NRKN16, Rag05]. mul [Kur19]. muld [Kur19]. [Kur19]. · $100 [Apt14]. $120 [Hen15b]. $127 [Llo15]. 3 [Ano15f, Ash82, Mal10, Ste12a]. ∆ [MS04]. $135.00 [Smi96]. $14 [Sch15]. $140 [GG14]. $15 [Jar90]. $17.95 [Had84]. $19.95 -1000 [Hub83]. -4000 [Gin91b]. -601 [Mul83, Nau98]. 20 [Ost07]. 2000 [Eva09b]. [Hub83]. -86 [Mar75]. -Ft [Edd71b, Mau13]. $24.95 [Lep14, Bro90]. $27 [W lo15]. $29 -inch [Ost07]. -year [GB95]. -Year-Old [Sha14]. $29.25 [Hea15]. $29.95 [Eva09b]. [Ger17, Mes15]. 30 [Mau13]. $31.00 [Bra15]. $34 [Sul14]. $35 Zaga´_ n [CM10]. [Ano15f, Dev14b, Lau14, Mir17, Rap15a]. $38 [Dan19b, Vet19]. $39.95 [Mol14b]. /Catalogue [Kun91]. /Charles [Tur07]. $39.99 [Bec15]. $40 [Dun20, LF15, Rob86]. /Collected [Gin93]. /Heretic [Tes10]. 40 [Edd71b]. $42 [Nau98]. $45 [Kes15]. /the [War08]. $49.95 [Ree20]. $49.99 [Bec15]. $50 [Kru17, Rem15]. $55 [Bon19b]. $60 [Mal15]. 0 [Ave18, Hei14a, Oes15, Swe17c, Wlo15, 600 [GB95]. $72 [Ave18]. $79 [Wil15]. 1 2 Ash82]. [Dic97a]. 1970 [Kru08]. 1971 [Wil75]. 1973 [Doe19]. 1975 [Ost80]. 1976 [Gin02d]. 1979 1 [Ano15f, BH73a, Ber14, Bru78b, Eva87b, [Ano78d].
    [Show full text]
  • Lunar Distances Final
    A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem.
    [Show full text]
  • Jjmonl 1502.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 8, No. 2 February 2015 Fireball From Space A Romulan plasma torpedo? . Not exactly. See inside, page 19 The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Jon Wallace Tom Heydenburg Paul Woodell Amy Ziffer In This Issue OUT THE WINDOW ON YOUR LEFT ................................... 4 FEBRUARY NIGHTS ....................................................... 14 MARE TRANQUILLITATIS .................................................. 5 JUPITER AND ITS MOONS ................................................ 16 JUPITER AT OPPOSITION ................................................... 6 TRANSIT OF THE JUPITER'S RED SPOT .............................
    [Show full text]
  • Mission Objectives for Geological Exploration of the Apollo 16 Landing
    Papike, J.J. and Merrill, R.B., eds. Proc. Conf. Lunar Highlands Crust (1980), p. 1-49 Printed in the United States of America 1980luhc.conf....1M Mission objectives for geological exploration of the Apollo 16 landing site1 W. R. Muehlberger The University of Texas at Austin, Austin, Texas 78712 Friedrich Horz Geology Branch, NASA Johnson Space Center, Houston, Texas 77058 J. R. Sevier Lunar and Planetary Institute, Houston, Texas 77058 G. E. Ulrich U.S. Geological Survey, Flagstaff, Arizona 86001 Summary-This document is a committee report which outlines scientific objectives and specific rationales developed for the exploration of the Apollo 16 site, our most important mission to the lunar highlands. Although premission hypotheses erroneously favored a volcanic origin for the Cayley plains as well as Descartes Mountains, the major mission objectives were successfully accomplished: to delineate the nature and origin of two major physiographic units of the lunar central highlands. The units are composed of fragmental impact deposits; present debate focuses on specific source areas of the samples and depositional mechanism(s). The premission exploration strategy was to use impact craters of various diameters and associated depths of penetration as stratigraphic probes. Specific sampling procedures, operational constraints, and suites of samples that were collected for specific local objectives, are described for lunar scientists who are unfamiliar with mission planning in general and more specifically with Apollo 16. A large number of samples taken to reconstruct local stratigraphic-structural relationships are either insuffi- ciently studied or have not been studied at all. While such stratigraphic-structural relationships are extremely complex, or even chaotic, at Apollo 16, additional insight into local geologic processes could be obtained by future investigation of these special sample suites.
    [Show full text]
  • Communications of the LUNAR and PLANETARY LABORATORY
    Communications of the LUNAR AND PLANETARY LABORATORY Number 70 Volume 5 Part 1 THE UNIVERSITY OF ARIZONA 1966 Communications of the Lunar and Planetary Laboratory These Communications contain the shorter publications and reports by the staff of the Lunar and Planetary Laboratory. They may be either original contributions, reprints of articles published in professional journals, preliminary reports, or announcements. Tabular material too bulky or specialized for regular journals is included if future use of such material appears to warrant it. The Communications are issued as separate numbers, but they are paged and indexed by volumes. The Communications are mailed to observatories and to laboratories known to be engaged in planetary, interplanetary or geophysical research in exchange for their reports and publica- tions. The University of Arizona Press can supply at cost copies to other libraries and interested persons. The University of Arizona GERARD P. KUIPER, Director Tucson, Arizona Lunar and Planetary Laboratory Published with the support of the National Aeronautics and Space Administration Library of Congress Catalog Number 62-63619 NO. 70 THE SYSTEM OF LUNAR CRATERS, QUADRANT IV by D. W. G. ARTHUR, RUTH H. PELLICORI, AND C. A. WOOD May25,1966 , ABSTRACT The designation, diameter, position, central peak information, and state of completeness are listed for each discernible crater with a diameter exceeding 3.5 km in the fourth lunar quadrant. The catalog contains about 8,000 items and is illustrated by a map in 11 sections. hiS Communication is the fourth and final part of listed in the catalog nor shown in the accompanying e System of Lunar Craters, which is a_calalag maps.
    [Show full text]