Master Gardener Corner: Pussy Willows Originally Published: March 10, 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pussy Willow Salix Discolor
Pussy Willow Salix discolor Like all plants in the Salix or willow genus, Pussy Willows are dioecious (separate male and female plants). It is the male plants that have the beloved silky, pearl gray catkins that resemble a cat’s paw. The female plants produce smaller, greenish catkins that mature into 1/3" long seed capsules. These capsules later split to release many tiny seeds with cottony hairs that are dispersed by wind and water. Native to Canada and roughly the northern half of the United States, the Pussy Willow is a multi- stemmed shrub or small tree, 15-25 feet tall, with spreading upright stems. The bark is slightly fissured. Year-old twigs are hairy but become smooth with age. The leaves of the Pussy willow are alternate, elliptic in shape, up to 5” long, with irregular teeth. The Latin name “discolor” refers to the contrasting colors of the leaf surfaces: shiny green on top and blue-green below, which aid in recognition. Pussy willows occur along shorelines, swamp margins and poorly drained thickets in a variety of soils as long as they’re wet. Preferring full to part-sun, Pussy willows will tolerate flooding and fire, often occurring in abundance in the shrub-dominated successional stage after fires. Fast-growing and short-lived, Pussy willows have not always been considered as beneficial. The wood is weak and easily damaged by ice and wind. The leaf/branch litter is “messy.” In moist soils, Pussy willows will produce extensive shallow root systems that can clog pipes, drains and septic fields. -
Poplars and Willows: Trees for Society and the Environment / Edited by J.G
Poplars and Willows Trees for Society and the Environment This volume is respectfully dedicated to the memory of Victor Steenackers. Vic, as he was known to his friends, was born in Weelde, Belgium, in 1928. His life was devoted to his family – his wife, Joanna, his 9 children and his 23 grandchildren. His career was devoted to the study and improve- ment of poplars, particularly through poplar breeding. As Director of the Poplar Research Institute at Geraardsbergen, Belgium, he pursued a lifelong scientific interest in poplars and encouraged others to share his passion. As a member of the Executive Committee of the International Poplar Commission for many years, and as its Chair from 1988 to 2000, he was a much-loved mentor and powerful advocate, spreading scientific knowledge of poplars and willows worldwide throughout the many member countries of the IPC. This book is in many ways part of the legacy of Vic Steenackers, many of its contributing authors having learned from his guidance and dedication. Vic Steenackers passed away at Aalst, Belgium, in August 2010, but his work is carried on by others, including mem- bers of his family. Poplars and Willows Trees for Society and the Environment Edited by J.G. Isebrands Environmental Forestry Consultants LLC, New London, Wisconsin, USA and J. Richardson Poplar Council of Canada, Ottawa, Ontario, Canada Published by The Food and Agriculture Organization of the United Nations and CABI CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © FAO, 2014 FAO encourages the use, reproduction and dissemination of material in this information product. -
Salix Discolor: Prospects for Phytoremediation of Lead and Polycyclic Aromatic Hydrocarbons Robert Matheson Supervisors: Dr
Matheson 1 Salix discolor: Prospects for phytoremediation of lead and polycyclic aromatic hydrocarbons Robert Matheson Supervisors: Dr. S. Dalton and Dr. P. Kamau Submitted in partial fulfilment of the requirements for Biology 489 April 08, 2016 Matheson 2 Abstract Phytoremediation is the application of green plants and their associated microbial communities for the removal, stabilization or detoxification of contaminants in the environment. Salix discolor, commonly known as the pussy willow, is a common Canadian shrub that was evaluated for phytoremediation potential of lead and polycyclic aromatic hydrocarbons (PAHs) using a short-term hydroponic species. Salix discolor was chosen because of the documented ability of willows to tolerate both lead and PAH contamination and their ability to sequester lead. The willows were grown in Hoagland’s nutrient solution for four weeks for four weeks, and was subsequently spiked with lead and/or PAHs for an additional 4 weeks. The tissues were then dried and the lead and PAHs were extracted for analysis via atomic absorption spectrometry and gas chromatography-mass spectrometry, respectively. Issues with the gas chromatography-mass spectrometry instrument prevented analysis of the PAHs. There was no accumulation of lead within the leaf/shoot tissue of the willows, but there was between 2940- 3450 ppm of lead accumulated within the root tissue. Furthermore, analysis of the growth medium at the conclusion of the experiment showed a decrease in lead concentration from 5 ppm to 0-0.2 ppm. Presence of either lead and/or PAHs did not significantly decrease the willows shoot growth [p=0.06] or decrease the transpiration rate of the willows [p=0.979]. -
Nova Scotia Provincial Status Report on Hoary Willow Salix Candida
i Nova Scotia Provincial Status Report on Hoary Willow Salix candida Flűeggé ex Willd. prepared for The Nova Scotia Species at Risk Working Group by Ruth E. Newell E.C. Smith Herbarium K.C. Irving Environmental Science Centre Acadia University Wolfville, Nova Scotia B4P 2R6 Funding provided by the Nova Scotia Species at Risk Conservation Fund Submitted December 16th, 2010 ii EXECUTIVE SUMMARY Wildlife Species Description and Significance Salix candida (Hoary Willow) is a low, deciduous, dioecious shrub, densely white woolly on current season’s twigs and lower leaf surfaces. The mature medial leaves are narrowly elliptic or oblanceolate, usually at least 4x as long as wide. Leaf margins are entire and slightly to strongly rolled under. Flowering occurs concurrently with leaf emergence. Female flowers have stalks 0.1 to 1.2 mm long and tomentose pistils. The anthers of male flowers are purple later changing to yellow. The fruit is a tomentose, pear-shaped capsule. Reproduction is both sexual and asexual by layering. Salix candida is an extremely rare species in Nova Scotia occurring in a rare habitat type i.e., rich, calcareous fens or marshes. Distribution In Nova Scotia, Hoary Willow occurs within the Black River system at the northwest end of Lake Ainslie, Inverness County, Cape Breton Island. Here it is known from four rich calcareous fens in close proximity to the river floodplain plus a single plant in a calcareous graminoid marsh. Field work failed to confirm the presence of Salix candida in Huntington, Cape Breton County - a record based on a herbarium specimen from Cape Breton University herbarium. -
Native Plant List Trees.XLS
Lower Makefield Township Native Plant List* TREES LIGHT MOISTURE TYPE BOTANICAL NAME COMMON NAME STREET SUN PART SHADE DRY MOIST WET TREE SHADE EVERGREEN Chamaecyparis thyoides Atlantic White Cedar x x x x IIex opaca American Holly x x x x Juniperus virginiana Eastern Red Cedar x x x Picea glauca White Spruce x x x Picea pungens Blue Spruce x x x Pinus echinata Shortleaf Pine x x x Pinus resinosa Red Pine x x x Pinus rigida Pitch Pine x x Pinus strobus White Pine x x x Pinus virginiana Virginia Pine x x x Thuja occidentalis Eastern Arborvitae x x x x Tsuga canadensis Eastern Hemlock xx x DECIDUOUS Acer rubrum Red Maple x x x x x x Acer saccharinum Silver Maple x x x x Acer saccharum Sugar Maple x x x x Asimina triloba Paw-Paw x x Betula lenta Sweet Birch x x x x Betula nigra River Birch x x x x Betula populifolia Gray Birch x x x x x Carpinus caroliniana American Hornbeam x x x (C. tomentosa) Carya alba Mockernut Hickory x x x x Carya cordiformis Bitternut Hickory x x x Carya glabra Pignut Hickory x x x x x Carya ovata Shagbark Hickory x x Castanea pumila Allegheny Chinkapin xx x Celtis occidentalis Hackberry x x x x x x Crataegus crus-galli Cockspur Hawthorn x x x x Crataegus viridis Green Hawthorn x x x x Diospyros virginiana Common Persimmon x x x x Fagus grandifolia American Beech x x x x PAGE 1 Exhibit 1 TREES (cont'd) LIGHT MOISTURE TYPE BOTANICAL NAME COMMON NAME STREET SUN PART SHADE DRY MOIST WET TREE SHADE DECIDUOUS (cont'd) Fraxinus americana White Ash x x x x Fraxinus pennsylvanica Green Ash x x x x x Gleditsia triacanthos v. -
Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property. -
Native Plant List TABLE 1: Species for Tree and Shrub Plantings Trees For
Native Plant List TABLE 1: Species for Tree and Shrub Plantings Trees for Dry-Open Sites Scientific Name Common Name Mature Height Betula populifolia Gray Birch 30' Juniperis virginiana Eastern Red Cedar 10-75' Pinus resinosa Red Pine 70' Pin us rigida Pitch Pine 50' Pinus stro bus White Pine 80' Quercus rubra Red Oak 70' Quercus coccinea Scarlet Oak 70' Quercus velutina Black Oak 70' Shrubs for Dry-Open Sites Scientific Name 'Common Name Mature Height Amelanchier canadensis Shadbush 15' Ceanothus americanus New Jersey Tea 4' Comptonia peregrina Sweetfern 4' Cornus racemosa Gray Dogwood 6-10' Gaylussacia baccata Black Huckleberry l' Hypericum prolificum Shrubby St. Johnswort 4' Juniperus communis Pasture Juniper 2' Myrica pensylvanica Bayberry 6' Prunus maritima Beach plum 6' Rhus aromatica Fragrant Sumac 3' Rhus copallina Shining Sumac 4-10' Rhus glabra Smooth Sumac 9-15' Rosa carolina Pasture Rose 3' Rosa virginiana Virginia Rose 3' Spirea tomentosa Steeplebush 3-4' Viburnum dentatum/recognitum Arrowwood 5-8' Viburnum lentago Nannyberry 15' Shrubs For Dry-Shady Sites Scientific Name Common Name Mature Height Hamamelis wrginiana Witch Hazel 15' Kalmia latifolia Mountain Laurel 3-8' Rhododendron nudiflorum Pinxterbloom Azalea 4-6' Vaccinium angustifolium Lowbush Blueberry 2' Viburnum dentatum Arrowwood 5-8' Trees For Moist Sites Scientific Name Common Name Mature Height Acer rubrum Red Maple 60' Betula nigra River Birch Chamaecyparis thyoides Atlantic White Cedar Fraxinus pennsylvanica Green Ash 60' Picea mariana Black Spruce 40' Picea -
The Plant List
the list A Companion to the Choosing the Right Plants Natural Lawn & Garden Guide a better way to beautiful www.savingwater.org Waterwise garden by Stacie Crooks Discover a better way to beautiful! his plant list is a new companion to Choosing the The list on the following pages contains just some of the Right Plants, one of the Natural Lawn & Garden many plants that can be happy here in the temperate Pacific T Guides produced by the Saving Water Partnership Northwest, organized by several key themes. A number of (see the back panel to request your free copy). These guides these plants are Great Plant Picks ( ) selections, chosen will help you garden in balance with nature, so you can enjoy because they are vigorous and easy to grow in Northwest a beautiful yard that’s healthy, easy to maintain and good for gardens, while offering reasonable resistance to pests and the environment. diseases, as well as other attributes. (For details about the GPP program and to find additional reference materials, When choosing plants, we often think about factors refer to Resources & Credits on page 12.) like size, shape, foliage and flower color. But the most important consideration should be whether a site provides Remember, this plant list is just a starting point. The more the conditions a specific plant needs to thrive. Soil type, information you have about your garden’s conditions and drainage, sun and shade—all affect a plant’s health and, as a particular plant’s needs before you purchase a plant, the a result, its appearance and maintenance needs. -
Impacts of Native and Non-Native Plants on Urban Insect Communities: Are Native Plants Better Than Non-Natives?
Impacts of Native and Non-native plants on Urban Insect Communities: Are Native Plants Better than Non-natives? by Carl Scott Clem A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2015 Key Words: native plants, non-native plants, caterpillars, natural enemies, associational interactions, congeneric plants Copyright 2015 by Carl Scott Clem Approved by David Held, Chair, Associate Professor: Department of Entomology and Plant Pathology Charles Ray, Research Fellow: Department of Entomology and Plant Pathology Debbie Folkerts, Assistant Professor: Department of Biological Sciences Robert Boyd, Professor: Department of Biological Sciences Abstract With continued suburban expansion in the southeastern United States, it is increasingly important to understand urbanization and its impacts on sustainability and natural ecosystems. Expansion of suburbia is often coupled with replacement of native plants by alien ornamental plants such as crepe myrtle, Bradford pear, and Japanese maple. Two projects were conducted for this thesis. The purpose of the first project (Chapter 2) was to conduct an analysis of existing larval Lepidoptera and Symphyta hostplant records in the southeastern United States, comparing their species richness on common native and alien woody plants. We found that, in most cases, native plants support more species of eruciform larvae compared to aliens. Alien congener plant species (those in the same genus as native species) supported more species of larvae than alien, non-congeners. Most of the larvae that feed on alien plants are generalist species. However, most of the specialist species feeding on alien plants use congeners of native plants, providing evidence of a spillover, or false spillover, effect. -
High Line Plant List Stay Connected @Highlinenyc
BROUGHT TO YOU BY HIGH LINE PLANT LIST STAY CONNECTED @HIGHLINENYC Trees & Shrubs Acer triflorum three-flowered maple Indigofera amblyantha pink-flowered indigo Aesculus parviflora bottlebrush buckeye Indigofera heterantha Himalayan indigo Amelanchier arborea common serviceberry Juniperus virginiana ‘Corcorcor’ Emerald Sentinel® eastern red cedar Amelanchier laevis Allegheny serviceberry Emerald Sentinel ™ Amorpha canescens leadplant Lespedeza thunbergii ‘Gibraltar’ Gibraltar bushclover Amorpha fruticosa desert false indigo Magnolia macrophylla bigleaf magnolia Aronia melanocarpa ‘Viking’ Viking black chokeberry Magnolia tripetala umbrella tree Betula nigra river birch Magnolia virginiana var. australis Green Shadow sweetbay magnolia Betula populifolia grey birch ‘Green Shadow’ Betula populifolia ‘Whitespire’ Whitespire grey birch Mahonia x media ‘Winter Sun’ Winter Sun mahonia Callicarpa dichotoma beautyberry Malus domestica ‘Golden Russet’ Golden Russet apple Calycanthus floridus sweetshrub Malus floribunda crabapple Calycanthus floridus ‘Michael Lindsey’ Michael Lindsey sweetshrub Nyssa sylvatica black gum Carpinus betulus ‘Fastigiata’ upright European hornbeam Nyssa sylvatica ‘Wildfire’ Wildfire black gum Carpinus caroliniana American hornbeam Philadelphus ‘Natchez’ Natchez sweet mock orange Cercis canadensis eastern redbud Populus tremuloides quaking aspen Cercis canadensis ‘Ace of Hearts’ Ace of Hearts redbud Prunus virginiana chokecherry Cercis canadensis ‘Appalachian Red’ Appalachian Red redbud Ptelea trifoliata hoptree Cercis -
Lycorma Delicatula
Lycorma delicatula Scientific Name Lycorma delicatula (White, 1845) a Synonyms: Aphaena delicatula White, 1845 Lycorma delicatulum (White, 1845) Common Name(s) Spotted lanternfly, spot clothing wax cicada, tropical cricket Type of Pest Phloem feeder b Taxonomic Position Class: Insecta, Order: Hemiptera, Family: Fulgoridae Reason for Inclusion PPQ Pest of Concern (New Pest Advisory Group) The SLF emergency response program in Pennsylvania is currently underway. Figure 1. Lycorma delicatula adult at rest (a) and wings The datasheet will be updated as new spread (b) (Lawrence Barringer, Pennsylvania information becomes available. Department of Agriculture, Bugwood.org). Pest Description Eggs: Eggs are laid masses that contain 30 to 50 brown seed-shaped eggs, deposited in parallel rows, and covered with a yellowish-brown or grey secretion that hardens into an ootheca (Park et al., 2009; Yoon et al., 2011; Dara et al., 2015). The egg mass is about 25 mm (approx. 1 in.) long and may resemble a smear of mud. After emergence, egg masses may remain on trees for a year or more. The secretion deteriorates over the course of the year, leaving columns of empty, small, brown eggs, similar in appearance to tire tread (Fig. 2) (Dara et al., 2015). For additional information and images, see the Egg Mass Identification Tips presentation developed by the Pennsylvania Department of Agriculture (PDA). Nymphs: There are four instars. The first to third instars are black-bodied with white spots on the head, body, and legs (Fig. 3a). The fourth instar is mostly red with black legs, white spots, and distinct red wing pads (Fig. -
Sustainable Short Rotation Coppice a Handbook
Sustainable Short Rotation Coppice A Handbook Authors: Ioannis Dimitriou & Dominik Rutz Contributions: Rita Mergner, Stefan Hinterreiter, Laurie Scrimgeour, Ioannis Eleftheriadis, Ilze Dzene, Željka Fištrek, Tomáš Perutka, Dagnija Lazdina, Gordana Toskovska, Linda Drukmane Editor: Dominik Rutz ISBN: 978-3-936338-36-2 Translations: The original language of the handbook is English. This handbook is also available in the following languages: Croatian, Czech, French, German, Greek, Latvian, and Macedonian Published: © 2015 by WIP Renewable Energies, Munich, Germany Contact: WIP Renewable Energies, Sylvensteinstr. 2, 81369 Munich, Germany [email protected], Tel.: +49 89 720 12 739 www.wip-munich.de Website: www.srcplus.eu Copyright: All rights reserved. No part of this book may be reproduced in any form or by any means, in order to be used for commercial purposes, without permission in writing from the publisher. The authors do not guarantee the correctness and/or the completeness of the information and the data included or described in this handbook. Disclaimer: The sole responsibility for the content of this handbook lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained in the handbook. 1 Acknowledgements This handbook was elaborated in the framework of the SRCplus project (IEE/13/574), supported by the European Commission through the Intelligent Energy for Europe (IEE) programme operated by the Executive Agency for Small and Medium-sized Enterprises (EASME). The authors would like to thank the European Commission for the support of the SRCplus project as well as the reviewers and SRCplus partners for their contribution to the handbook.