ACTN2 Variant Associated with a Cardiac Phenotype Suggestive of Left-Dominant Arrhythmogenic Cardiomyopathy

Total Page:16

File Type:pdf, Size:1020Kb

ACTN2 Variant Associated with a Cardiac Phenotype Suggestive of Left-Dominant Arrhythmogenic Cardiomyopathy ACTN2 variant associated with a cardiac phenotype suggestive of left-dominant arrhythmogenic cardiomyopathy Jean-Marc Good, MD, PhD,* Florence Fellmann, MD, PhD,* Zahurul A. Bhuiyan, MBBS, PhD, FESC,* Samuel Rotman, MD,† Etienne Pruvot, MD,‡ Jurg€ Schl€apfer, MD‡ From the *Department of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, †Service of Clinical Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, and ‡Department of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. Introduction Arrhythmogenic cardiomyopathy (ACM) is a heritable heart KEY TEACHING POINTS disease characterized by fibrofatty replacement of the cardio- The variant p.Tyr473Cys in the ACTN2 gene, coding myocytes. It can result in life-threatening arrhythmias and for the Z-disk protein alpha-actinin-2, leads to a sudden cardiac death (SCD). Arrhythmogenic right ventricu- dominantly inherited phenotype suggestive of left- lar dysplasia/cardiomyopathy (ARVD/C) is the most com- dominant arrhythmogenic cardiomyopathy (ACM). mon form of ACM, while left-dominant or biventricular This implies that analysis of ACTN2 might be ACM is less frequent.1 Genes involved in ACM pathology mainly encode desmosomal protein,2 but anomalies in other considered in patients with ACM in whom genetic genes have been described.3,4 screening was inconclusive. Variants in the alpha-actinin-2 (ACTN2) gene have been The signal for plakoglobin was markedly reduced in associated with different cardiac manifestations, including the myocardial biopsy of our index case. This hypertrophic cardiomyopathy (HCM), dilated cardiomyopa- 5–9 6 further supports the concept that plakoglobin thy (DCM), atrial arrhythmia, left ventricular noncom- fi fi de ciency may be a common feature of ACMs, paction (LVNC), idiopathic ventricular brillation, and independently of their molecular origin. SCD.7 Alpha-actinin-2, the protein encoded by ACTN2, is a major component of the sarcomere Z-disc expressed in The decreased signal for plakoglobin in the the cardiac and skeletal muscle. Its supposed role is to bind myocardial biopsy of our index case suggests a link actin filaments and to stabilize the muscle contractile appa- between Z-disc proteins and the desmosome. This 10,11 ratus. Changes in its scaffolding function have been pro- remains to be investigated. posed to be pathogenic and lead to DCM and HCM. Additionally, alpha-actinin-2 interacts with several signaling proteins and ion channels.11,12 Some speculate that mutant alpha-actinin-2 affects the localization and function of car- Case reports diac ion channels and thus might contribute to arrhythmic The female proband (II-2 in Figure 1B) presented with poly- phenotypes. We describe here 4 members of a Swiss family morphic ventricular premature beats at age 25 years. At age in which a missense ACTN2 variant cosegregates with a car- 62, she experienced tiredness, dyspnea, and thoracic discom- diomyopathy suggestive of left-dominant ACM. fort. The electrocardiogram revealed low voltage in periph- eral leads and T-wave inversion in lead V5 and V6 (Figure 2A). Coronary angiography showed no evidence of coronary artery disease. The cardiovascular magnetic reso- KEYWORDS ACTN2; Alpha-actinin-2; Arrhythmia; Left-dominant nance demonstrated a diffusely hypokinetic nondilated left arrhythmogenic cardiomyopathy; Next-generation sequencing; Plakoglobin (Heart Rhythm Case Reports 2020;6:15–19) ventricle with a reduced ejection fraction (41%) and wide- spread areas of late gadolinium enhancement predominantly Address reprint requests and correspondence: Dr Jean-Marc Good, Department of Genetic Medicine, Lausanne University Hospital (CHUV), in the inferior and anterolateral walls (Figure 2B). The right Av. Pierre Decker 5, 1011 Lausanne, Switzerland. E-mail address: ventricle was considered normal. A metabolic positron emis- [email protected]. sion tomography scan did not reveal any inflammatory 2214-0271/© 2019 Heart Rhythm Society. Published by Elsevier Inc. This is an open access article https://doi.org/10.1016/j.hrcr.2019.10.001 under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 16 Heart Rhythm Case Reports, Vol 6, No 1, January 2020 Figure 1 Genetic investigations. A: Sanger sequence confirmation of the ACTN2 variant c.1418A.G (p.Tyr473Cys). B: Family pedigree. Lines through sym- bols indicate deceased subject; arrow indicates proband; red symbols indicate heterozygous carriers of p.Tyr473Cys in ACTN2 and affected by left-dominant arrhythmogenic cardiomyopathy. component (Figure 2C). A left ventricle endomyocardial c.1418A.G, p.Tyr473Cys was identified in heterozygosity biopsy showed diffuse fibrosis without fatty replacement (Figure 1A). No variants were found in the other genes of (Figure 3A). Immunofluorescence staining revealed a mark- the panel, notably in JUP, encoding plakoglobin. For the rea- edly diminished signal for plakoglobin (Figure 3B), while the sons explained in the discussion section (below), the variant signal level was preserved for other desmosomal proteins. p.Tyr473Cys in ACTN2 was considered likely pathogenic The diagnosis of left-dominant ACM was strongly suspected and causative of the familial left-dominant ACM. based on the ventricular arrhythmias, T-wave inversions in the precordial leads, diffuse hypokinesia with late gadolin- ium enhancement, and the diffuse areas of fibrosis. Following Discussion some episodes of symptomatic nonsustained ventricular Several ACTN2 mutations located in different regions of the tachycardia, a cardioverter-defibrillator was implanted. protein, including the actin binding, spectrin-like, and The offspring (III-1, III-2, III-3; Figure 1B) of the proband calmodulin-like domains, have been associated to HCM.5,6,8 (II-2), aged 44, 36, and 35 years, respectively, all presented Among them, the p.Thr495Met variant, located in the second with right bundle branch block morphology ventricular pre- spectrin-like domain similarly as p.Tyr473Cys, was observed mature beats. They reported fatigue, dyspnea, and/or palpita- in 3 different families.5,8 The spectrin-like domain of alpha- tions. Their electrocardiograms were all characterized by low actinin-2 is known to interact with different structural and voltages in peripheral leads, T-wave inversion in lateral leads signaling proteins.11 Less frequently, ACTN2 mutations have (III-1), incomplete right bundle branch block (III-3), and been associated with the phenotype of DCM, as for example otherwise normal traces (III-2). Cardiovascular magnetic in carriers of the p.Gln9Arg variant.9 In addition, members resonance was suggestive of a left-dominant ACM in all 3. of 2 families with variants in the actin binding domain of The ejection fractions were reduced in III-1 (ventricle left: alpha-actinin-2 presented with a more complex and heteroge- 47%, right: 49%) and preserved in III-2 and III-3. Areas of nous cardiac phenotype: the p.Ala119Thr variant was linked late gadolinium enhancement restricted to the left ventricle to DCM, LVNC, idiopathic ventricular fibrillation, and were observed with a predominance for the subepicardial SCD,7 and the p.Met228Thr variant cosegregated with layer of the heart basal regions in the anteroseptal, anterolat- HCM, early-onset supraventricular arrhythmias, and atrioven- eral, inferior, and inferoseptal walls (III-1); anteroseptal, infe- tricular block, as well as with LVNC.6 Finally, an association rior, and inferoseptal walls (III-2); and anterior, anteroseptal, between ACTN2 and ARVD/C has already been reported in and anterolateral walls (III-3). the ClinVar database (unpublished; p.Glu829Ter, Given the familial nature of the cardiomyopathy, high- SCV000740535). In summary, heterozygous missense muta- throughput DNA sequencing (using TruSight One panel tions of ACTN2 are associated with a range of cardiac pheno- from Illumina, San Diego, CA) was performed to screen 10 types, including structural and rhythmic disorders with a genes (ACTN2, DSG2, DSC2, PKP2, DSP, LDB3, JUP, highly variable expressivity, even for a given variant. RYR2, TGFb3, TMEM43) involved in arrhythmogenic and The variant p.Tyr473Cys has been recently reported related cardiomyopathies. In the proband (II-2) and in the 3 in association with a phenotype of DCM/HCM but was children (III-1, III-2, III-3), the ACTN2 missense variant considered of “uncertain significance” owing to insufficient Good et al ACTN2 Variant and Arrhythmogenic Cardiomyopathy 17 Figure 2 Cardiologic investigations in subject II-2. A: Electrocardiogram showing low voltage in peripheral leads and T-wave inversion in lead V5 and V6. B: Magnetic resonance imaging showing late gadolinium enhancement. C: Metabolic positron emission tomography scan showing no inflammatory component. evidence to determine its role in the disease (unpublished; this amino acid substitution has not been observed in the pub- reported in the ClinVar database, SCV000834859). Howev- lic database gnomAD as of April 2019. For these reasons, we er, several arguments suggest a pathogenic role. First, consider p.Tyr473Cys as likely pathogenic even in the p.Tyr473Cys segregates with the phenotype of left- absence of direct functional proof. dominant ACM in 4 members of our family. Second, the The phenotype in affected members of our family is Tyr473 residue is highly conserved across various species, homogenous and corresponds well with left-dominant ACM and its replacement with cysteine
Recommended publications
  • FLNC Pathogenic Variants in Patients with Cardiomyopathies
    FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations Flavie Ader, Pascal de Groote, Patricia Réant, Caroline Rooryck-Thambo, Delphine Dupin-Deguine, Caroline Rambaud, Diala Khraiche, Claire Perret, Jean-François Pruny, Michèle Mathieu-dramard, et al. To cite this version: Flavie Ader, Pascal de Groote, Patricia Réant, Caroline Rooryck-Thambo, Delphine Dupin-Deguine, et al.. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clinical Genetics, Wiley, 2019, 96 (4), pp.317-329. 10.1111/cge.13594. hal-02268422 HAL Id: hal-02268422 https://hal-normandie-univ.archives-ouvertes.fr/hal-02268422 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FLNC pathogenic variants in patients with cardiomyopathies Prevalence and genotype-phenotype correlations Running Title : FLNC variants genotype-phenotype correlation Flavie Ader1,2,3, Pascal De Groote4, Patricia Réant5, Caroline Rooryck-Thambo6, Delphine Dupin-Deguine7, Caroline Rambaud8, Diala Khraiche9, Claire Perret2, Jean Francois Pruny10, Michèle Mathieu Dramard11, Marion Gérard12, Yann Troadec12, Laurent Gouya13, Xavier Jeunemaitre14, Lionel Van Maldergem15, Albert Hagège16, Eric Villard2, Philippe Charron2, 10, Pascale Richard1, 2, 10. Conflict of interest statement: none declared for each author 1.
    [Show full text]
  • A Mutation Update for the FLNC Gene in Myopathies and Cardiomyopathies
    Received: 20 December 2019 | Revised: 12 February 2020 | Accepted: 25 February 2020 DOI: 10.1002/humu.24004 MUTATION UPDATE A mutation update for the FLNC gene in myopathies and cardiomyopathies Job A. J. Verdonschot1,2 | Els K. Vanhoutte1 | Godelieve R. F. Claes1 | Apollonia T. J. M. Helderman‐van den Enden1 | Janneke G. J. Hoeijmakers3 | Debby M. E. I. Hellebrekers1 | Amber de Haan1 | Imke Christiaans4,5 | Ronald H. Lekanne Deprez4 | Hanne M. Boen6 | Emeline M. van Craenenbroeck6 | Bart L. Loeys7 | Yvonne M. Hoedemaekers5,8 | Carlo Marcelis8 | Marlies Kempers8 | Esther Brusse9 | Jaap I. van Waning10,11 | Annette F. Baas12 | Dennis Dooijes12 | Folkert W. Asselbergs13 | Daniela Q. C. M. Barge‐Schaapveld14 | Pieter Koopman15 | Arthur van den Wijngaard1 | Stephane R. B. Heymans2,16,17 | Ingrid P. C. Krapels1 | Han G. Brunner1,8,18 1Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands 2Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands 3Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands 4Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands 5Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands 6Department of Cardiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium 7Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
    [Show full text]
  • Human Periprostatic Adipose Tissue: Secretome from Patients With
    CANCER GENOMICS & PROTEOMICS 16 : 29-58 (2019) doi:10.21873/cgp.20110 Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia PAULA ALEJANDRA SACCA 1, OSVALDO NÉSTOR MAZZA 2, CARLOS SCORTICATI 2, GONZALO VITAGLIANO 3, GABRIEL CASAS 4 and JUAN CARLOS CALVO 1,5 1Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; 2Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital “José de San Martín”, Buenos Aires, Argentina; 3Department of Urology, Deutsches Hospital, Buenos Aires, Argentina; 4Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina; 5Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina Abstract. Background/Aim: Periprostatic adipose tissue Prostate cancer (PCa) is the second most common cancer in (PPAT) directs tumour behaviour. Microenvironment secretome men worldwide. While most men have indolent disease, provides information related to its biology. This study was which can be treated properly, the problem consists in performed to identify secreted proteins by PPAT, from both reliably distinguishing between indolent and aggressive prostate cancer and benign prostate hyperplasia (BPH) disease. Evidence shows that the microenvironment affects patients. Patients and Methods: Liquid chromatography-mass tumour behavior. spectrometry-based proteomic analysis was performed in Adipose tissue microenvironment is now known to direct PPAT-conditioned media (CM) from patients with prostate tumour growth, invasion and metastases (1, 2). Adipose cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or tissue is adjacent to the prostate gland and the site of benign disease (CM-BPH). Results: The highest number and invasion of PCa.
    [Show full text]
  • Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D
    ORIGINAL ARTICLE Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D. Sabatini2, Eliane J. Mu¨ller3, Pamela Cowin2,4 and David L. Stokes1,2,5 Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, b-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength. Journal of Investigative Dermatology (2008) 128, 2665–2675; doi:10.1038/jid.2008.141; published online 22 May 2008 INTRODUCTION dense plaque that is further from the membrane and that Desmosomes are large macromolecular complexes that mediates the binding of intermediate filaments.
    [Show full text]
  • Proteins That Mediate Protein Aggregation and Cytotoxicity Distinguish Alzheimer'S Hippocampus from Normal Controls
    Aging Cell (2016) pp1–16 Doi: 10.1111/acel.12501 Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer’s hippocampus from normal controls Srinivas Ayyadevara,1,2 Meenakshisundaram types of aggregation, and/or aggregate-mediated cross-talk Balasubramaniam,2,3 Paul A. Parcon,2 Steven W. Barger,1,2 between tau and Ab. Knowledge of protein components that W. Sue T. Griffin,1,2 Ramani Alla,1,2 Alan J. Tackett,4 promote protein accrual in diverse aggregate types implicates Samuel G. Mackintosh,4 Emanuel Petricoin,5 Weidong Zhou5 common mechanisms and identifies novel targets for drug and Robert J. Shmookler Reis1,2,4 intervention. Key words: Abeta(1-42); acetylation (protein); aggregation 1McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA (protein); Alzheimer (Disease); beta amyloid; C. elegans; 2Department of Geriatrics, University of Arkansas for Medical Sciences, Little microtubule-associated protein tau; neurodegeneration; Rock, AR 72205, USA neurotoxicity; oxidation (protein); phosphorylation (protein); 3BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA proteomics. 4Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA 5 Center for Applied Proteomics and Molecular Medicine, George Mason Introduction University, Manassas, VA 20110, USA Summary Protein aggregation has long been recognized as a common feature of most or all age-dependent neurodegenerative diseases, and yet very little Neurodegenerative diseases are distinguished by characteristic is known about which features of aggregating proteins contribute to protein aggregates initiated by disease-specific ‘seed’ proteins; their accrual or their neurotoxicity.
    [Show full text]
  • Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies
    International Journal of Molecular Sciences Review Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies 1, 1, 1,2, Quynh Nguyen y , Kenji Rowel Q. Lim y and Toshifumi Yokota * 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; [email protected] (Q.N.); [email protected] (K.R.Q.L.) 2 The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada * Correspondence: [email protected]; Tel.: +1-780-492-1102 These authors contributed equally to the work. y Received: 28 December 2019; Accepted: 19 January 2020; Published: 22 January 2020 Abstract: Cardiomyopathies are diseases of heart muscle, a significant percentage of which are genetic in origin. Cardiomyopathies can be classified as dilated, hypertrophic, restrictive, arrhythmogenic right ventricular or left ventricular non-compaction, although mixed morphologies are possible. A subset of neuromuscular disorders, notably Duchenne and Becker muscular dystrophies, are also characterized by cardiomyopathy aside from skeletal myopathy. The global burden of cardiomyopathies is certainly high, necessitating further research and novel therapies. Genome editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as increasingly important technologies in studying
    [Show full text]
  • Plakophilin-2 Haploinsufficiency Causes Calcium Handling
    International Journal of Molecular Sciences Article Plakophilin-2 Haploinsufficiency Causes Calcium Handling Deficits and Modulates the Cardiac Response Towards Stress Chantal J.M. van Opbergen 1 , Maartje Noorman 1, Anna Pfenniger 2, Jaël S. Copier 1, Sarah H. Vermij 2,3 , Zhen Li 2, Roel van der Nagel 1, Mingliang Zhang 2, Jacques M.T. de Bakker 1,4, Aaron M. Glass 5, Peter J. Mohler 6,7, Steven M. Taffet 5, Marc A. Vos 1, Harold V.M. van Rijen 1, Mario Delmar 2 and Toon A.B. van Veen 1,* 1 Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584CM Utrecht, The Netherlands 2 Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA 3 Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland 4 Department of Medical Biology, Academic Medical Center Amsterdam, 1105AZ Amsterdam, The Netherlands 5 Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA 6 Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA 7 Departments of Physiology & Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine Wexner Medical Center, Columbus, OH 43210, USA * Correspondence: [email protected] Received: 1 August 2019; Accepted: 19 August 2019; Published: 21 August 2019 Abstract: Human variants in plakophilin-2 (PKP2) associate with most cases of familial arrhythmogenic cardiomyopathy (ACM). Recent studies show that PKP2 not only maintains intercellular coupling, but also regulates transcription of genes involved in Ca2+ cycling and cardiac rhythm.
    [Show full text]
  • Metformin Rescues Muscle Function in BAG3 Myofibrillar Myopathy Models
    bioRxiv preprint doi: https://doi.org/10.1101/574806; this version posted March 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Metformin rescues muscle function in BAG3 myofibrillar myopathy models Avnika A. Ruparelia1, Emily A. McKaige1, Caitlin Williams1, Keith E. Schulze2, Margit Fuchs3,4, Viola Oorschot5, Emmanuelle Lacene6, Meregalli Mirella7, Emily C. Baxter1, Yvan Torrente7, Georg Ramm5,8, Tanya Stojkovic9, Josée N. Lavoie3,4,10, and Robert J. Bryson-Richardson1* 1 School of Biological Sciences, Monash University, Melbourne 3800, Australia 2 Monash Micro Imaging, Monash University, Melbourne 3800, Australia 3 Centre de Recherche sur le Cancer de l'Université Laval, Ville de Québec, Quebec, Canada. 4 Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Ville de Québec, Quebec, Canada. 5 Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Melbourne 3800, Australia 6 APHP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Institut de Myologie, Laboratoire de Pathologie Risler, GH Pitié-Salpêtrière, Paris, France. 7 Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Centro Dino Ferrari, via F Sforza, 35, 20122 Milan, Italy 8 Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. 9 Centre de référence des maladies neuromusculaires, Hôpital Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris, Paris, France.
    [Show full text]
  • Novel Pathogenic Variants in Filamin C Identified in Pediatric Restrictive Cardiomyopathy
    Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy Jeffrey Schubert1, 2, Muhammad Tariq3, Gabrielle Geddes4, Steven Kindel4, Erin M. Miller5, and Stephanie M. Ware2. 1 Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati College of Medicine, Cincinnati, OH; 2 Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; 3 Faculty of Applied Medical Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia; 4Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI; 5Cincinnati Children’s Hospital Medical Center, Cincinnati, OH. Correspondence: Stephanie M. Ware, MD, PhD Department of Pediatrics Indiana University School of Medicine 1044 W. Walnut Street Indianapolis, IN 46202 Telephone: 317 274-8939 Email: [email protected] Grant Sponsor: The project was supported by the Children’s Cardiomyopathy Foundation (S.M.W.), an American Heart Association Established Investigator Award 13EIA13460001 (S.M.W.) and an AHA Postdoctoral Fellowship Award 12POST10370002 (M.T.). ___________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Schubert, J., Tariq, M., Geddes, G., Kindel, S., Miller, E. M., & Ware, S. M. (2018). Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy. Human Mutation, 0(ja). https://doi.org/10.1002/humu.23661 Abstract Restrictive cardiomyopathy (RCM) is a rare and distinct form of cardiomyopathy characterized by normal ventricular chamber dimensions, normal myocardial wall thickness, and preserved systolic function. The abnormal myocardium, however, demonstrates impaired relaxation. To date, dominant variants causing RCM have been reported in a small number of sarcomeric or cytoskeletal genes, but the genetic causes in a majority of cases remain unexplained especially in early childhood.
    [Show full text]
  • Molecular Cloning of a Functional Promoter of the Human Plakoglobin
    European Journal of Endocrinology (2001) 145 625±633 ISSN 0804-4643 EXPERIMENTAL STUDY Molecular cloning of a functional promoter of the human plakoglobin gene Eyck PoÈtter1,2, Sabine Braun1, Ulrich Lehmann3 and Georg Brabant1 1Department of Clinical Endocrinology, 2Department of Nuclear Medicine and 3Institute of Pathology, Medizinische Hochschule, D-30625 Hannover, Germany (Correspondence should be addressed to G Brabant, Klinische Endokrinologie OE6820, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; Email: [email protected]) Abstract Objective: Plakoglobin (Pg) is the only cytoplasmic protein component common to both junctional complexes mediating cell±cell adhesion, adherens junctions and desmosomes. In these complexes Pg appears to act as a linker protein anchoring transmembrane proteins of the cadherin superfamily to the actin cytoskeleton and intermediate ®lament system respectively. Intercellular adhesion is frequently disturbed in skin diseases and in carcinomas, enabling tumour progression and metastasis. Whereas Pg expression is lost in some thyroid tumours and carcinoma cell lines, little information on Pg gene regulation is currently available owing to a lack of promoter studies. Design and methods: We have cloned and sequenced genomic DNA from a human library that resulted in 979 bp upstream of the published Pg cDNA. The transcriptional start was mapped by rapid ampli®cation of cDNA ends. Methylation-speci®c PCR of bisul®te-modi®ed cell line DNA was applied to probe the methylation status of a promoter-associated CpG island. Reporter-gene constructs of various promoter fragments were transiently transfected in thyroid carcinoma cell lines and their activities were determined by luciferase measurements. Results and conclusions: A 1 kb DNA fragment harbouring a functional promoter of the human Pg gene was cloned and characterized.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy
    Journal of Clinical Medicine Review Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy Matthias Eden 1,2 and Norbert Frey 1,2,* 1 Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 German Centre for Cardiovascular Research, Partner Site Heidelberg, 69120 Heidelberg, Germany * Correspondence: [email protected] Abstract: Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combi- nations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby Citation: Eden, M.; Frey, N. Cardiac represents another example for the complex genetic and phenotypic continuum of these diseases.
    [Show full text]