Hurricanes Are a Regular Threat to the SCIPP Gulf Coast and Average Amount of Time That Passes Between Hurricane Events at Should Be Planned for Each Season
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significant Loss Report
NATIONAL FLOOD INSURANCE PROGRAM Bureau and Statistical Agent W-01049 3019-01 MEMORANDUM TO: Write Your Own (WYO) Principal Coordinators and NFIP Servicing Agent FROM: WYO Clearinghouse DATE: July 18, 2001 SUBJECT: Significant Loss Report Enclosed is a listing of significant flooding events that occurred between February 1978 and October 2000. Only those events that had more than 1500 losses are included on the list. These data were compiled for WYO Companies and others to use to remind their customers of the impact of past flooding events. Please use this information in your marketing efforts as you feel it is appropriate. If you have any questions, please contact your WYO Program Coordinator. Enclosure cc: Vendors, IBHS, FIPNC, WYO Standards Committee, WYO Marketing Committee, ARCHIVEDGovernment Technical Representative APRIL 2018 Suggested Routing: Claims, Marketing, Underwriting 7700 HUBBLE DRIVE • LANHAM, MD 20706 • (301) 731-5300 COMPUTER SCIENCES CORPORATION, under contract to the FEDERAL EMERGENCY MANAGEMENT AGENCY, is the Bureau and Statistical Agent for the National Flood Insurance Program NATIONAL FLOOD INSURANCE PROGRAM SIGNIFICANT FLOOD EVENTS REPORT EVENT YEAR # PD LOSSES AMOUNT PD ($) AVG PD LOSS Massachusetts Flood Feb. 1978 Feb-78 2,195 $20,081,479 $9,149 Louisiana Flood May 1978 May-78 7,284 $43,288,709 $5,943 WV, IN, KY, OH Floods Dec 1978 Dec-78 1,879 $11,934,512 $6,352 PA, CT, MA, NJ, NY, RI Floods Jan-79 8,826 $31,487,015 $3,568 Texas Flood April 1979 Apr-79 1,897 $19,817,668 $10,447 Florida Flood April 1979 Apr-79 -
Texas Hurricane History
Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
Hurricane Irma Storm Review
Hurricane Irma Storm Review November 11, 2018 At Duke Energy Florida, we power more than 4 million lives Service territory includes: . Service to 1.8 million retail customers in 35 counties . 13,000 square miles . More than 5,100 miles of transmission lines and 32,000 miles of distribution lines . Owns and operates nearly 9,500 MWs of generating capacity . 76.2% gas, 21% coal, 3% renewable, 0.2%oil, 2,400 MWs Purchased Power. 2 Storm Preparedness Activities Operational preparation is a year-round activity Coordination with County EOC Officials . Transmission & Distribution Systems Inspected and . Structured Engagement and Information Maintained Sharing Before, During and After Hurricane . Storm Organizations Drilled & Prepared . Coordination with county EOC priorities . Internal and External Resource Needs Secured . Public Communications and Outreach . Response Plan Tested and Continuously Improved Storm Restoration Organization Transmission Hurricane Distribution System Preparedness System Local Governmental Coordination 3 Hurricane Irma – Resources & Logistics Resources . 12,528 Total Resources . 1,553 pre-staged in Perry, Georgia . 91 line and vegetation vendors from 25 states . Duke Energy Carolinas and Midwest crews as well as resources from Texas, New York, Louisiana, Colorado, Illinois, Oklahoma, Minnesota, Maine and Canada . 26 independent basecamps, parking/staging sites Mutual Assistance . Largest mobilization in DEF history . Mutual Assistance Agreements, executed between DEF and other utilities, ensure that resources can be timely dispatched and fairly apportioned. Southeastern Electric Exchange coordinates Mutual Assistance 4 5. Individual homes RESTORATION 3. Critical Infrastructure 2. Substations 1. Transmission Lines 4. High-density neighborhoods 5 Hurricane Irma- Restoration Irma’s track northward up the Florida peninsula Restoration Summary resulted in a broad swath of hurricane and tropical Customers Peak Customers Outage storm force winds. -
Background Hurricane Katrina
PARTPART 33 IMPACTIMPACT OFOF HURRICANESHURRICANES ONON NEWNEW ORLEANSORLEANS ANDAND THETHE GULFGULF COASTCOAST 19001900--19981998 HURRICANEHURRICANE--CAUSEDCAUSED FLOODINGFLOODING OFOF NEWNEW ORLEANSORLEANS •• SinceSince 1559,1559, 172172 hurricaneshurricanes havehave struckstruck southernsouthern LouisianaLouisiana ((ShallatShallat,, 2000).2000). •• OfOf these,these, 3838 havehave causedcaused floodingflooding inin NewNew thethe OrleansOrleans area,area, usuallyusually viavia LakeLake PonchartrainPonchartrain.. •• SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: 1812,1812, 1831,1831, 1860,1860, 1915,1915, 1947,1947, 1965,1965, 1969,1969, andand 20052005.. IsaacIsaac MonroeMonroe ClineCline USWS meteorologist Isaac Monroe Cline pioneered the study of tropical cyclones and hurricanes in the early 20th Century, by recording barometric pressures, storm surges, and wind velocities. •• Cline charted barometric gradients (right) and tracked the eyes of hurricanes as they approached landfall. This shows the event of Sept 29, 1915 hitting the New Orleans area. • Storm or tidal surges are caused by lifting of the oceanic surface by abnormal low atmospheric pressure beneath the eye of a hurricane. The faster the winds, the lower the pressure; and the greater the storm surge. At its peak, Hurricane Katrina caused a surge 53 feet high under its eye as it approached the Louisiana coast, triggering a storm surge advisory of 18 to 28 feet in New Orleans (image from USA Today). StormStorm SurgeSurge •• The surge effect is minimal in the open ocean, because the water falls back on itself •• As the storm makes landfall, water is lifted onto the continent, locally elevating the sea level, much like a tsunami, but with much higher winds Images from USA Today •• Cline showed that it was then northeast quadrant of a cyclonic event that produced the greatest storm surge, in accordance with the drop in barometric pressure. -
RE-ANALYSIS of 1969'S HURRICANE CAMILLE COMPLETED Catastrophic Hurricane Now Ranks As Second Strongest on Record
RE-ANALYSIS OF 1969’s HURRICANE CAMILLE COMPLETED Catastrophic hurricane now ranks as second strongest on record A re-analysis of the database for Hurricane Camille, an extremely intense hurricane that devastated the U.S. Gulf Coast on the night of August 17, 1969, has been completed. Based upon this reassessment, Hurricane Camille is indicated at landfall on the Mississippi coast to have been a Category 5 on the Saffir-Simpson Hurricane Wind Scale with peak sustained winds of 175 mph and a central pressure of 900 mb. This is the same category as analyzed originally, but the peak sustained winds were reduced from 190 mph and the central pressure lowered from 909 mb. Camille is also reanalyzed to have undergone genesis as a tropical cyclone 18 hours earlier than first indicated on August 14, 1969. When comparing Camille with the two other known Category 5 hurricanes that have struck the continental United States since 1900, Camille (900 mb and 175 mph) ranks between the 1935 Labor Day hurricane (892 mb and 185 mph) and 1992’s Andrew (922 mb and 165 mph) as the strongest hurricanes on record at landfall. Hurricane Camille on the afternoon of August 17, 1969, from the ESSA-9 polar orbiting satellite. Revisions to the Camille’s database were accomplished by obtaining the original observations collected – mainly by ships, weather stations, coastal radars, Navy/Air Force/Environmental Science Services Administration (ESSA) Hurricane Hunter aircraft reconnaissance planes, ESSA/NASA satellite imagery – and analyzing Camille based upon our understanding of hurricanes today. (The agency ESSA is now the National Oceanic and Atmospheric Administration - NOAA.) Margie Kieper, Jack Beven, Hugh Willoughby, Chris Landsea, and the NHC Best Track Change Committee all made substantial contributions toward the reanalysis of this devastating hurricane. -
Richmond, VA Hurricanes
Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage. -
Pilotthe Cameron Parish 35¢ June 21, 2007 Vol
PilotThe Cameron Parish 35¢ June 21, 2007 Vol. 50--No. 37 Cameron, La. 70631 THIS HISTORIC photo was taken from the second or third floor of the Cameron Courthouse on June 27, 1957, the day that Hurricane Audrey devastated Cameron Parish. Several hundred persons in the courthouse survived but about 500 others else- where in the parish perished. This photo was taken by the late Hadley Fontenot, who was Cameron’s county agent at the time. Audrey’s 50th anniversary will be observed Wednesday, June 27 in ceremonies at the courthouse. Audrey’s 50th anniversary to be observed here June 27th By CYNDI SELLERS Hurricane Audrey book; Cameron Parish Library - his- Even as Cameron Parish torical photos; Cameron Pilot struggles to recover from the - archival materials including effects of Hurricane Rita, the the first issue after the storm; tragic and devastating impact KPLC-TV - documentaries of Hurricane Audrey in 1957 and film clips; and the has not been forgotten. On National Hurricane Museum Wednesday, June 27, the and Science Center. parish will commemorate the Corporate sponsors of the 50th anniversary of the dead- commemoration are Cheniere ly storm, which claimed over LNG, Sempra Energy, and 400 lives. Cameron Communications. The ceremony will take place at 10 a.m. on the steps of the Cameron Court House, Oak Grove which sheltered hundreds from the fury of the storm. A speaker told light lunch will be served Brigadier General after the program, and dis- plays of hurricane informa- Robert J. LeBlanc Rev. John Reynolds will be tion, books, and memorabilia guest speaker at Oak Grove will be available for viewing. -
Geographical and Historical Variation in Hurricanes Across the Yucatán Peninsula
Chapter 27 Geographical and Historical Variation in Hurricanes Across the Yucatán Peninsula Emery R. Boose David R. Foster Audrey Barker Plotkin Brian Hall INTRODUCTION Disturbance is a continual though varying theme in the history of the Yucatán Peninsula. Ancient Maya civilizations cleared and modified much of the forested landscape for millennia, and then abruptly abandoned large areas nearly 1,000 years ago, allowing forests of native species to reestablish and mature (Turner 1974; Hodell, Curtis, and Brenner 1995). More recently, late twentieth century population growth has fueled a resurgence of land-use activity including logging, slash-and-burn agriculture, large mechanized agricultural projects, tourism, and urban expansion (Turner et al. 2001; Turner, Geoghegan, and Foster 2002). Throughout this lengthy history, fires have affected the region—ignited purposefully or accidentally by humans, and occasionally by lightning (Lundell 1940; Snook 1998). And, as indicated by ancient Maya records, historical accounts, and contemporary observations, intense winds associated with hurricanes have repeatedly damaged forests and human settlements (Wilson 1980; Morales 1993). Despite the generally acknowledged importance of natural and human disturbance in the Yucatán Peninsula, there has been little attempt to quantify This research was supported by grants from the National Aeronautics and Space Agency (Land Cover Land-Use Change Program), the National Science Foundation (DEB-9318552, DEB-9411975), and the A. W. Mellon Foundation, and is a contribution from the Harvard Forest Long-Term Ecological Research Program. 495 496 THE LOWLAND MAYA AREA the spatial and temporal distribution of this activity, or to interpret its relationship to modern vegetation patterns (cf. Lundell 1937, 1938; Cairns et al. -
Determining the Viability of Recent Storms As Modern Analogues For
The University of Southern Mississippi The Aquila Digital Community Master's Theses Summer 8-2016 Determining the Viability of Recent Storms as Modern Analogues for North-Central Gulf of Mexico Paleotempestology Through Sedimentary Analysis and Storm Surge Reconstruction Joshua Caleb Bregy University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Part of the Atmospheric Sciences Commons, Climate Commons, Geology Commons, Geomorphology Commons, Oceanography Commons, Other Earth Sciences Commons, Other Oceanography and Atmospheric Sciences and Meteorology Commons, Sedimentology Commons, and the Stratigraphy Commons Recommended Citation Bregy, Joshua Caleb, "Determining the Viability of Recent Storms as Modern Analogues for North-Central Gulf of Mexico Paleotempestology Through Sedimentary Analysis and Storm Surge Reconstruction" (2016). Master's Theses. 198. https://aquila.usm.edu/masters_theses/198 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. DETERMINING THE VIABILITY OF RECENT STORMS AS MODERN ANALOGUES FOR NORTH-CENTRAL GULF OF MEXICO PALEOTEMPESTOLOGY THROUGH SEDIMENTARY ANALYSIS AND STORM SURGE RECONSTRUCTION by Joshua Caleb Bregy A Thesis Submitted to the Graduate School and the Department of Marine Science at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science Approved: ________________________________________________ Dr. Davin J. Wallace, Committee Chair Assistant Professor, Marine Science ________________________________________________ Dr. Vernon L. Asper, Committee Member Professor, Marine Science ________________________________________________ Dr. Grant L. Harley, Committee Member Assistant Professor, Geography and Geology ________________________________________________ Dr. -
Hurricane Audrey Storm Tide
QC9¥f 0 7^-2 3 39 NAL HURRICANE RESEARCH PROJECT ATSL REPORT NO. 23 Hurricane Audrey Storm Tide *•*'• U. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary WEATHER BUREAU F. W. Reichelderfer, Chief NATIONAL HURRICANE RESEARCH PROJECT REPORT NO. 23 Hurricane Audrey Storm Tide by D. Lee Harris U. S. Weather Bureau, Washington, D. C. Washington, D. C. October 1958 UlfiMOl 0b0b32^ NATIONAL HURRICANE RESEARCH PROJECT REPORTS Reports by Weather Bureau units, contractors, and coopera- tors working on the hurricane problem are pre-printed in this series to facilitate immediate distribution of the information among the workers and other interested units. As this limited < reproduction and distribution in this form do not constitute formal scientific publication, reference to a paper in the . series should identify it as a pre-printed report. 1. Objectives and basic desigu of the National Hurricane Research Pro- ? No. ject. March 1956. ^ T , inR^ I P Numerical weather prediction of hurricane motion. July 195©. No. SementTError analysis of prognostic 500-mb. maps made for numer ical weather prediction of hurricane motion. March 195 (> 3. Rainfall associated with hurricanes. July 195&. i] No. I. %m problems involved in the study of storm surges. December 1956. is No. 5. Survey of meteorological factors pertinent to reduction of loss of life and property in hurricane situations. March 1957. ; No 6. A mean atmosphere for the West Indies area. May 1957. j No. 7. An index of tide gages and tide gage records for the Atlantic and Gulf coasts of the United States. May 1957- \ Nmo ft PartE£ Ili. ^exchangeHurricanes andoftheenergysea betweensurface temperaturethe sea and thefield.atmosphere ?j in relation to hurricane behavior. -
Flood Risk in Jamaica : Recent Damage and Loss Due to Tropical Cyclones in Jamaica
Flood Risk in Jamaica : Recent Damage and Loss due to tropical cyclones in Jamaica. Report prepared as part of the Climate Change and Inland Flooding in Jamaica: Risk and Adaptation Measures for Vulnerable Communities : Disaster Risk Management and Policies in Jamaica. David Smith1and Arpita Mandal2 Caribbean territories are highly vulnerable to the impacts of hazards, which may be natural, resulting from hydro-meteorological, seismic or geologic triggers or anthropological. Studies of damage and loss due to floods in the Caribbean are few and studies relating damage to intensity of the event are even fewer. For example, the EM-DAT database indicates that 119 floods occurred in the Caribbean since 1983. This resulted in 49833 deaths, 3,963,286 people affected and damage of 866,325,000 US dollars4. Of this figure, 3353 (67%) deaths occurred in a single event in Hispaniola in 2004. The figures for damage are missing for 99 of the 119 events. It has been suggested that disaster risk reduction requires good data not just on the impact of hazards, but also on the nature, magnitude and extent of hazards to be effective. In the Caribbean, assessments of damage and loss have been carried out by the governments of affected countries or by UN ECLAC. While these studies may indicate the severity of the event; few non-economic data are quantified, nor are data presented so that damage can be related quantitatively to the severity of events or compared quantitatively between events, though some qualitative analysis is possible. Notwithstanding this, economic damage and loss due to tropical cyclones in the Caribbean are significant proportion of GDP with some events causing damage and loss of more than 100% of GDP.