Oxidative Stress and Hormesis in Evolutionary Ecology And

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress and Hormesis in Evolutionary Ecology And David Costantini Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology A Marriage Between Mechanistic and Evolutionary Approaches Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology David Costantini Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology A Marriage Between Mechanistic and Evolutionary Approaches 123 David Costantini Department of Biology University of Antwerp Wilrijk Belgium and Institute for Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK ISBN 978-3-642-54662-4 ISBN 978-3-642-54663-1 (eBook) DOI 10.1007/978-3-642-54663-1 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2014934114 Ó Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To my mother Preface Research programmes on oxidative stress and hormesis are wide ranging. Bio- medical and toxicological sciences have traditionally centralised such research, but in the last years we have seen the merger of laboratory-based biochemical and physiological approaches to the study of oxidative stress and hormetic mechanisms with ethological, ecological and evolutionary principles. Although research in this area is still in its infancy, many new fields of research are emerging from the marriage between these mechanistic and functional perspectives. What is critically lacking yet is a synthesis geared towards evolutionary ecologists, ecophysiologists and behavioural ecologists that seeks to consolidate a vast body of literature whilst, at the same time, remains sensitive to readers who may not have the depth of knowledge often necessary to navigate new fields of scientific enquiry. This book seeks to fill in this gap. Its goal is to synthesise and integrate research on oxidative stress and hormesis, but as seen from the perspective of an evolutionary ecologist or physiologist. Work in this area can open new frontiers for research to further our understanding on how and why biological diversity has evolved. This book does not have, however, the presumption to claim that oxidative stress or hormesis are vital, nor does it wish to fully describe biochemical mechanisms. Rather it wishes to emphasise that oxidative stress and hormesis are missing pieces of a complex biological puzzle. Focussing on these missing pieces and integrating them with other biological features can provide fascinating insights into how organisms work, how they evolve to sustain physiological function under a vast array of environmental conditions and why they work the way they do. The book is organised into ten chapters. Chapter 1 provides general historical information, definitions and background of research on oxidative stress physiol- ogy, hormesis and life history; Chaps. 2–10 analyse how oxidative stress and hormesis have influenced many aspects of life, from the incipient stages of development to the strategies of reproduction and the ways organisms age. While every chapter deals with a specific topic, it should not be forgotten that they are all related to each other. For example, when interpreting the effect of reproductive effort on oxidative damage, it is also important to consider that such effect will be possibly dependent on other aspects, like early life experiences, predation risk, or food quality and quantity. Moreover, the physiological machinery in turn may influence the way a specific factor impacts on the individual. For example, over evolutionary time, diet has been likely adjusted to the physiological needs of an vii viii Preface individual or species, while at the same time the physiological strategies have been adjusted to make use of what is present in the diet itself. We clearly need to integrate all this information in order to further our understanding of how variation in physiological systems and life history strategies comes out. In this regard, the term adaptation has been used in a general way throughout the book, including both real adaptations and exaptations. For a character to be regarded as an adaptation, it must be a derived character that evolved in response to a specific selective agent. The emergence of an antioxidant mechanism could have been maintained, for example, by natural selection because it confers current selective advantage, but this is not evidence of why it has been evolved. This means that protection against oxidative stress may not be the primary reason for why all antioxidant mechanisms have been evolved, but evolution of a certain antioxidant mechanism could have provided secondarily a selective advantage. Opportunities for studying truly natural processes are diminishing because pristine or near-pristine environments are rapidly shrinking and becoming more difficult to reach. This should remind us that we need to know more about how the changing and emerging environments are influencing natural animal populations. The many examples reported throughout the book will actually show how oxi- dative stress and hormesis can represent two important links between environ- mental changes and evolutionary fitness, hence they can represent two relevant tools of investigation for conservation biologists, as well. The book is not exhaustive, hence many relevant studies have not been included. The book has also never taken into consideration discussion of meth- odological approaches to quantify reactive species production, antioxidants or damage levels. Obviously, methods for the quantification of components of the redox machinery have to satisfy specific technical criteria. We have to recognise, however, that each method has limits; hence using a combination of more oxi- dative status parameters is essential. It is also crucial that the biochemistry of what is being measured is taken into consideration when interpreting experimental results. We have not to lose sight of the fact that there are also specific restrictions inherent to many ecological research programmes, such as the availability of only small amounts of blood and the requirement of non-terminal sampling. The biological meaning of many mechanisms or molecules that are currently measured to quantify damage or antioxidant defences is often hard to gauge, because most in-depth information about the physiological functions of many of them come from studies on a limited number of taxa. We also do not know in many cases what differences in oxidative stress mean; this is because we still do not know whether the impact on evolutionary fitness differs among oxidative damage parameters. Consequently, any generalisations and extrapolations about function should be made with considerable caution. Focusing too much on the limited array of model organisms generally used, and on highly conserved path- ways, narrows our understanding of what works under what circumstances. We need to appreciate that evolution has likely modified or changed the basic defence toolkit and that understanding how different organisms have solved the challenges posed by their environments and lifestyles is interesting and important. Preface ix The complexity and diversity of the natural world is a powerful experimental resource that is often forgotten by many scientific disciplines. Appreciating such a complexity will be instructive and will offer us new opportunities for exploring new frontiers of biological research. David Costantini Acknowledgments Above all I want to thank very much indeed Nadia Macciocchi, Fernando and Serena Costantini, Livia and Fernando Carello, who supported and encouraged me. I would like to thank very much Gianfranco Brambilla, Claudio Carere, Mauro Carratelli, Giacomo Dell’Omo, Alberto Fanfani, Neil Metcalfe and Pat Monaghan for valuable advice and support over my career. I also thank very much the following colleagues
Recommended publications
  • 1 an Example of Parasitoid Foraging: Torymus Capite
    1 AN EXAMPLE OF PARASITOID FORAGING: TORYMUS CAPITE (HUBER; HYMEMOPTERA: TORYMIDAE [CHALCIDOIDEA]) ATTACKING THE GOLDENROD GALL-MIDGE ASTEROMYIA CARBONIFERA (O. S.; DIPTERA: CECIDOMYIIDAE) Richard F. Green Department of Mathematics and Statistics University of Minnesota Duluth Duluth, MN 55812 U. S. A. INTRODUCTION Van Alphen and Vet (1986) refer to the work of Arthur E. Weis (1983) on a torymid wasp that attacks a gall midge on goldenrod. This system seems to be quite well-studied, particularly, but not exclusively, by Weis. Van Alphen and Vet point out that the parasitoids tend to attack about the same proportion of hosts in patches (galls) with varying numbers of hosts. This has implications for the foraging strategy that the parasitoids use. In this note I want to do three things: (1) outline the basic biology of the organisms involved, (2) describe the results of a foraging experiment conducted by Weis (1983), and (3) interpret the results in terms of Oaten’s stochastic model of optimal foraging. Arthur E. Weis is coauthor of a book (Abrahamson and Weis 1997) on the biology of a three trophic-level system involving a goldenrod stem-gall maker Eurosta solidaginis, its host plant and its enemies. The work described here is earlier work, done an a different species. The biology of the system The species of greatest interest are the torymid parasitoid Torymus capite, which is a larval parasitoid of the gall midge Asteromyia carbonifera, which itself makes blister-like galls on the leaves of goldenrod, especially Canadian goldenrod, Solidgo canadiensis L. (Compositae). There are three generations of gall midge (and its parasitoids) each year.
    [Show full text]
  • Evolutionary Diversification of the Gall Midge Genus Asteromyia
    Molecular Phylogenetics and Evolution 54 (2010) 194–210 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context John O. Stireman III a,*, Hilary Devlin a, Timothy G. Carr b, Patrick Abbot c a Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA b Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA c Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235, USA article info abstract Article history: Gall-forming insects provide ideal systems to analyze the evolution of host–parasite interactions and Received 3 April 2009 understand the ecological interactions that contribute to evolutionary diversification. Flies in the family Revised 17 August 2009 Cecidomyiidae represent the largest radiation of gall-forming insects and are characterized by complex Accepted 9 September 2009 trophic interactions with plants, fungal symbionts, and predators. We analyzed the phylogenetic history Available online 16 September 2009 and evolutionary associations of the North American cecidomyiid genus Asteromyia, which is engaged in a complex and perhaps co-evolving community of interactions with host-plants, fungi, and parasitoids. Keywords: Mitochondrial gene trees generally support current classifications, but reveal extensive cryptic diversity Adaptive diversification within the eight named species. Asteromyia likely radiated after their associated host-plants in the Aste- Fungal mutualism Insect-plant coevolution reae, but species groups exhibit strong associations with specific lineages of Astereae. Evolutionary asso- Cryptic species ciations with fungal mutualists are dynamic, however, and suggest rapid and perhaps coordinated Parasitoid changes across trophic levels.
    [Show full text]
  • ECOLOGICAL FACTORS EXPLAINING GENETIC DIFFERENTIATION in APHIDOMORPHA ASSOCIATED with PECAN and WATER HICKORY TREES a Dissertati
    ECOLOGICAL FACTORS EXPLAINING GENETIC DIFFERENTIATION IN APHIDOMORPHA ASSOCIATED WITH PECAN AND WATER HICKORY TREES A Dissertation by KYLE EDWARD HARRISON Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Raul F. Medina Committee Members, Thomas J. DeWitt Cecilia Tamborindeguy Aaron M. Tarone Head of Department, David W. Ragsdale May 2017 Major Subject: Entomology Copyright 2017 Kyle Harrison ABSTRACT Host-associated differentiation (HAD) is a form of ecologically mediated host-race formation between parasite populations. Since HAD can ultimately lead to speciation, it has been proposed as a way to account for the vast species diversity observed in parasitic arthropods. However, the importance of HAD to species diversity is unclear because the factors explaining the occurrence of HAD are only partially understood. Still, there are several examples of parasite-host case study systems for which there is a known cause of reproductive isolation between host-associated parasite populations. Thus, several biological and ecological factors (e.g., immigrant inviability or allochrony) have been proposed as explanatory factors for HAD occurrence. The body of research presented here represents the first quantitative assessment of the generalized relationship between HAD occurrence and the incidence of the proposed explanatory factors. This research was supported by field experiments that assessed the co-occurrence of HAD and particularly important explanatory factors. These experiments were conducted in a community of Aphidomorpha species living on pecan and water hickory trees. I found that HAD can be explained in general based on the incidence of specific explanatory factors (i.e.
    [Show full text]
  • ECOLOGICAL FACTORS AFFECTING the ESTABLISHMENT of the BIOLOGICAL CONTROL AGENT Gargaphia Decoris DRAKE (HEMIPTERA: TINGIDAE)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ECOLOGICAL FACTORS AFFECTING THE ESTABLISHMENT OF THE BIOLOGICAL CONTROL AGENT Gargaphia decoris DRAKE (HEMIPTERA: TINGIDAE) A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Manawatu, New Zealand Cecilia María Falla 2017 ABSTRACT The Brazilian lace bug (Gargaphia decoris Drake (Hemiptera:Tingidae)) was released in New Zealand in 2010 for the biological control of the invasive weed woolly nightshade (Solanum mauritianum Scopoli (Solanaceae)). Currently there is scarce information about the potential effect of ecological factors on the establishment of this biological control agent. This study investigated: 1) the effect of maternal care and aggregation on nymphal survival and development; 2) the effect of temperature, photoperiod and humidity on G. decoris performance; and 3) the effect of light intensity on S. mauritianum and G. decoris performance. Maternal care and aggregation are characteristic behaviours of G. decoris. These behaviours have an adaptive significance for the offspring and are key determinants for the survival of the species under natural conditions. Maternal care is reported to increase the survival and development of offspring under field conditions, and higher aggregations to increase the survival of the offspring. However, in this study, maternal care negatively affected the survival and development of the offspring, and higher aggregations had no significant impact on offspring survival.
    [Show full text]
  • Conflict Between Optimal Clutch Size for Mothers and Offspring in the Leaf Miner, Leucoptera Sinuella
    Ecological Entomology (2004) 29, 429–436 Conflict between optimal clutch size for mothers and offspring in the leaf miner, Leucoptera sinuella 1 2 HIDEKI KAGATA andTAKAYUKI OHGUSHI 1Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan and 2Center for Ecological Research, Kyoto University, Kamitanakami Hirano-cho, Japan Abstract. 1. Clutch size in a leaf-mining moth, Leucoptera sinuella (Reutti), was examined to determine whether the clutch size in natural populations meets the prediction of an optimal strategy, through comparisons between the optimal clutch sizes for offspring and for a mother. 2. A field experiment revealed that premature leaf abscission, egg dropping, and larval competition were important selective forces in determining the clutch size of this leaf miner on its host plant, Salix miyabeana. Then, optimal clutch size was predicted using the theoretical model of Weis et al. (1983), from the data obtained in the field experiment. 3. The model predicts that the clutch size that maximises offspring fitness is two, and that the clutch size that maximises reproductive success of the female varies from two to four, depending on the female’s survival rate between oviposition events. The predicted clutch size (two) was identical to the clutch size observed most frequently in the field, assuming > 95% survival rate of females. Suitability of the model of Weis et al. (1983) was discussed based on these results. Key words. Leaf miner, life-history evolution, offspring fitness, optimal strategy, reproductive success. Introduction 1993), attackby natural enemies during the egg or larval The mechanism of clutch size determination is one of the period (Damman, 1991; Damman & Cappuccino, 1991; important components of life-history evolution (Stearns, Siemens & Johnson, 1992), and the maintenance of a suit- 1992), and has been repeatedly examined in several able microclimate during the egg stage (Clark& Faeth, taxonomic groups from both theoretical and empirical 1998).
    [Show full text]
  • Horizontal Gene Transfer in the Sponge Amphimedon Queenslandica
    Horizontal gene transfer in the sponge Amphimedon queenslandica Simone Summer Higgie BEnvSc (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Biological Sciences Abstract Horizontal gene transfer (HGT) is the nonsexual transfer of genetic sequence across species boundaries. Historically, HGT has been assumed largely irrelevant to animal evolution, though widely recognised as an important evolutionary force in bacteria. From the recent boom in whole genome sequencing, many cases have emerged strongly supporting the occurrence of HGT in a wide range of animals. However, the extent, nature and mechanisms of HGT in animals remain poorly understood. Here, I explore these uncertainties using 576 HGTs previously reported in the genome of the demosponge Amphimedon queenslandica. The HGTs derive from bacterial, plant and fungal sources, contain a broad range of domain types, and many are differentially expressed throughout development. Some domains are highly enriched; phylogenetic analyses of the two largest groups, the Aspzincin_M35 and the PNP_UDP_1 domain groups, suggest that each results from one or few transfer events followed by post-transfer duplication. Their differential expression through development, and the conservation of domains and duplicates, together suggest that many of the HGT-derived genes are functioning in A. queenslandica. The largest group consists of aspzincins, a metallopeptidase found in bacteria and fungi, but not typically in animals. I detected aspzincins in representatives of all four of the sponge classes, suggesting that the original sponge aspzincin was transferred after sponges diverged from their last common ancestor with the Eumetazoa, but before the contemporary sponge classes emerged.
    [Show full text]
  • The Evolutionary Ecology of Host-Microbiome Symbiosis In
    THE EVOLUTIONARY ECOLOGY OF HOST-MICROBIOME SYMBIOSIS IN ONTHOPHAGUS DUNG BEETLES Erik Stetson Parker Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biology, Indiana University February 2021 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Doctoral Committee ______________________________________ Armin P. Moczek, Ph.D. ______________________________________ Jen Lau, Ph.D. ______________________________________ Jay T. Lennon, Ph.D. ______________________________________ Irene L.G. Newton, Ph.D. ______________________________________ Whitney M. Schlegel, Ph.D. February 24th, 2021 ii ACKNOWLEDGEMENTS This dissertation would not have been possible without the help and support of many people. First, I would like to thank all the members of my committee: Jen, Jay, Irene, and Whitney. Your time, effort, and attention over the years have made me a better scientist and have made the work contained within this dissertation exponentially better than it would have been otherwise. Thank you all for sharing your valuable time with me, and more than anything thank you for caring. I would also like to thank all the past and present members of the Moczek lab for their support and shared expertise over these last six years. Being able to turn to all of you for help with projects when I needed it was almost as important as being able to turn to you all for distraction and entertainment when I was feeling burnt out. Thank you all for being there for me, and especially you, Anna. You were universally a great group of coworkers and I will look back on our time together fondly, even as I miss sharing my days with you all.
    [Show full text]
  • Assessing the Drivers of Adaptive Radiation in a Complex of Gall Midges: a Multitrophic Perspective on Ecological Speciation
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2012 Assessing the Drivers of Adaptive Radiation in a Complex of Gall Midges: A Multitrophic Perspective on Ecological Speciation Jeremy J. Heath Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Environmental Sciences Commons Repository Citation Heath, Jeremy J., "Assessing the Drivers of Adaptive Radiation in a Complex of Gall Midges: A Multitrophic Perspective on Ecological Speciation" (2012). Browse all Theses and Dissertations. 778. https://corescholar.libraries.wright.edu/etd_all/778 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. ASSESSING THE DRIVERS OF ADAPTIVE RADIATION IN A COMPLEX OF GALL MIDGES: A MULTITROPHIC PERSPECTIVE ON ECOLOGICAL SPECIATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Jeremy J. Heath M.S. Entomology, Ohio State University, 2001 B.S.(H) Environmental Science, Acadia University, 1996 ____________________________________________ 2012 Wright State University COPYRIGHT BY JEREMY J. HEATH 2012 WRIGHT STATE UNIVERSITY GRADUATE SCHOOL 12 December 2012 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Jeremy J. Heath ENTITLED Assessing the drivers of adaptive radiation in a complex of gall midges: A multitrophic perspective on ecological speciation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.
    [Show full text]
  • Gall Midges (Diptera: Cecidomyiidae) Are Vectors for Their Fungal Symbionts
    Symbiosis, 1 (1985) 185-194 Balaban Publishers, Philadelphia/Rehovot 185 Gall Midges (Diptera: Cecidomyiidae) are Vectors for their Fungal Symbionts ART BORKENT and JOHN BISSETT Biosystematics Research Institute, Central Experimental Farm, Ottawa, Ontario, K1A OC6, Canada Tel. {613)996-1665 Received September 7, 1985; Accepted October 20, 1985 Abstract The female adults of three groups of Cecidomyiidae have evolved specialized structures to transport conidia of Macrophoma or related taxa. At least for some of these cecid species, the gall midges depend on the inoculated fungi as food for larvae developing within galls. Conidia are carried in conspicuous, elongate pockets on abdominal segment 9 in females of most Alycaulina. In the Lasiopterina, conidia are entrapped among well developed setae on segment 8 and the cercus. In the Asphondyliidi, conidia are carried in a membranous sac dorsal to abdominal sternite 7 and opening along the posterior margin of that sternite. These different structural adaptations to transport conidia and the phy lo• genetic relationships of the three cecid taxa indicate that an interdependence of each group with Macrophoma-like fungi may have evolved independently in these three groups of gall midges. Keywords: Cecid, vector, symbiosis, Asteromyia, Asphondylia, Lasioptera, Macrophoma. 1. Introduction Only a few instances of a mutualistic relationship have been discovered between arthropods and fungi in which the arthropod serves as vector of the fungus (Batra and Batra, 1979; Graham, 1967; Kukor and Martin, 1983; Lindquist, 1985; Morgan, 1968; Weber, 1979). In all of these cases the fungus is transported by adult females of the vector and is subsequently utilized as food for the immatures and sometimes also the adult.
    [Show full text]
  • Fontes Et Al.: Phytophagous Insects Associated with Goldenrods209
    Fontes et al.: Phytophagous Insects Associated with Goldenrods209 PHYTOPHAGOUS INSECTS ASSOCIATED WITH GOLDENRODS (SOLIDAGO SPP.) IN GAINESVILLE, FLORIDA E. M. G. FONTES1, D. H. HABECK, AND F. SLANSKY, JR. Dept. of Entomology & Nematology University of Florida Gainesville, FL 32611-0740 ABSTRACT The insect fauna of four species of goldenrods, Solidago canadensis var. scabra, S. fistulosa, S. gigantea and S. leavenworthii, was surveyed during four years in and around Gainesville, Florida. The 122 phytophagous species collected are listed and classified according to relative frequency of occurrence, guild, host range, plant part attacked, life stages collected, and associated goldenrod species. Only 14 (11%) of the phytophagous species are known to be restricted to goldenrods and Aster (Composi- tae). Eight insect species are considered as possible biological control agents of Sol- idago spp. RESUMEN La fauna de insectos presente en cuatro especies de vara de oro, Solidago ca- nadensis var scabra, S. fistulosa, S. gigantea y S. leavenworthii fué, estudiada en Gainesville, Florida durante cuatro años. Los 122 specimenes fitófagos colectados, se han listado y clasificado de acuerdo a la frequencia relativa de aparición, asociación, rango de hospedantes, parte de la planta atacada, estado de desarrollo y especies de vara de oro a las que se asociaron. Solamente 14 (11%) de los fitófagos hallados son conocidos como específicos de las vara de oro y Aster (Compositae). Ocho especies son consideradas como posibles agentes de control biológico de Solidago spp. ———————————— Goldenrods (Asteraceae: Solidago spp.) are common on roadsides and in open fields throughout the eastern United States. They first attracted the attention of nat- uralists because of their aesthetic appeal and as a nectar source for pollinators in late fall (Feller-Demalsy & Lamontagne 1979, Hensel 1982).
    [Show full text]
  • The 58Th Annual Meeting Entomological Society of America the 58Th Annual Meeting Entomological Society of America
    TheThe 58th58th AnnualAnnual MeetingMeeting ofof thethe EntomologicalEntomological SocietySociety ofof AmericaAmerica December 12-15, 2010 Town and Country Convention Center San Diego, CA Social Events .................................................................................... 11 The Stridulators ............................................................................... 11 Student Activities ........................................................................12 Linnaean Games .............................................................................. 12 Student Competition for the President’s Prize ............................... 12 Student Debate ............................................................................... 12 Student Awards ............................................................................... 12 Student Reception ........................................................................... 12 Student Volunteers ......................................................................... 12 Awards and Honors .....................................................................12 Honorary Membership .................................................................... 12 ENTOMOLOGY 2010 ESA Fellows...................................................................................... 12 Founders’ Memorial Award ............................................................ 12 58th Annual Meeting ESA Professional Awards ................................................................. 13 Editors’
    [Show full text]
  • Bio-Écologie Et Dynamique Des Populations De Cécidomyie Des
    Bio-écologie et dynamique des populations de cécidomyie des fleurs (Procontarinia mangiferae), un ravageur inféodé au manguier (Mangifera indica), en vue de développer une lutte intégrée Paul Amouroux To cite this version: Paul Amouroux. Bio-écologie et dynamique des populations de cécidomyie des fleurs (Procontarinia mangiferae), un ravageur inféodé au manguier (Mangifera indica), en vue de développer une lutte intégrée. Biodiversité et Ecologie. Université de la Réunion, 2013. Français. NNT : 2013LARE0034. tel-01237273 HAL Id: tel-01237273 https://tel.archives-ouvertes.fr/tel-01237273 Submitted on 3 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE LA REUNION Faculté des Sciences et Technologies THESE Présentée à l’Université de La Réunion pour obtenir le DIPLOME DE DOCTORAT Discipline : Biologie des populations et écologie Ecole Doctorale Sciences Technologie Santé (E.D.S.T.S) Laboratoire : UMR 53, Peuplement des Végétaux et Bio-agresseurs en Milieu Tropical Bio-écologie et dynamique des populations de cécidomyie des fleurs
    [Show full text]