Hydrogeologic Evolution of Estancia Valley, a Closed Basin in Central

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogeologic Evolution of Estancia Valley, a Closed Basin in Central o Bureau. of Mines and Min Resources Open-fileReport 69 HydrogeologicEvolution of Estancia Valley, a Closed Basin in Central New Mexico by Frank B. Titus Socorro, 1973 PREFACE i ABSTRACT iii INTRODUCTION 1 J?tqose and Scope 1 Location and Geography 2 Toposraphy of the Valley 5 Regional To-aphic Setting 8 Previous Work 9 Salt Earvest from the Playas 13 PRE-LACUSTRINE GWLOSY 15 Distribution of Pre-Tertiary ;9ocks 15 Stratigraphy and Hydrologic Properties of Pre-Tertiary Rocks 20 Precambrian 20 Pennsylvanian ' 23 Permian 34 Triassic 80 Jurassic and Cretaceous 40 ,. StructuralFeatures of the Basin 41 STR4TIGRApEFI AND HYDWIlXIC PROPERTIES OF THE KQ,LEY FIIL 45 Estancia ValleyFonmtion 47 ' Stratigraphy 50 Environment of Accumulation-AThrough-flowing River 60 Age 62 Irrigation Wells Pumping f$on?klluviwn 65 7. Dog Lake Fomtion 67 Stratigraphy 69 Hydrologic Properties 85 QQ4ORPHOLKXOF BASIN, DESCRIPTION OF POST-LAKE 86 Erosion of Estancia ValleyFormation 86 Geomrphic Features Formed by Faly Lake Estancia 90 Hill Area 91 Lobo.,;. North End of Basin 95 West Side of Basin 96 lbpgraphic Sill, its Valley, and its Ancestral River 99 Geona3rphc Features Fomd by Ute Lake Estancia 108 LacustrineFeatures Formed in Shallow Rejuvenated Lake 113 GWLKX OF THE PLAYA DEPRFSSIONS AND DUNES 117 Small Dunes 120 Great Dunes 123 PlayaDepressions 128 Playa Sediment and Hydrolqy 141 HYDRXLXY OF THE BASIN 164 Subsurface Leakage 164 Modern HydrologicConditions 170 SUWARY OF EVASIN HISTORY, OUA- COFXEZATIONS 17 8 me-LacustrineHistory 178 LacustrineHistory and Correlations 181 .._ -. RE;-m%REJcEs 191 CONETiXS Page 3 APPENDICES 196 ., . ~. A -- Selected Drillers' Logsof Water Wells 19 6 B -- Sample Logs from Deep Test Holes 205 C -- Chemical Analysesof Water from Playasand Sel.eta W€ !llS 210 .. CONTENTS Page 4 FIGURES 1 -- Index mp sh.7inglocation of study3 2 -- Toposraphic map of Estancia Valley 6 3 -- Geologic map of EstanciaValley 16 4 -- hroducible water wells drilled in Madera Formation 26 5 - High-yield water wells and carbon dioxide wells 31 6 - Relief map of Precambrian surface 42 7 -- Geolcgic map of valley fill showing outcrops and shorelines 46 8 - Map shming thicbess of valley fill 48 9 - Fencediagram of test holes drilled in T. 6 N., 'R. 93. :68 10 - Graphic sections of Cog Lake Formation in T. 6 N., R. 9 E. 71 11 - lbpxpaphic mp, Tps. 4 and 5 N., R. 8 E., showing Estancia Valley Formation 88A 12 - lbmaphic map, 9s. 8 and 9, Rs. 9 and 10 E., showing shoreline i~ features 92A 13 - Map of Pinos Wells andEncino Basins 102 14 - Map for playas, great dunes, and gypsiferousoffshore bar 114 15 - Aerial photsqaph, central Laguna del Perro and nearby playa depressions 119 16 - Scatter of playadepressions and playa shapes 130 17 - Hypthetical cross section through playa-depression field 135 18 - Sch-tic cross section through playadepression ,149 19 - Schatic crosssection of the valley 165 20 - Correlation chart for late Pleistocene kdRecent 182 .. 1 PREFACE This project was completed with the considerable help of many individuals and.with information and data provided byseveral agencies. The New Mexico StateEngineer District Office in Albuquerque provided logs of many water wells in the area and also provided copies of several maps that are theresult of their administrative work inEstancia Valley. ' J. T. Everheart,geohydrologist with that office, was' always available to discuss hydrologic phenomena in the basin and to provide conclusions that have resulted.from . his analyses of considerable data. Personnel of the U.S. GeologicalSurvey in Albuquerque analyzedthe water samplesfor the project: funding for the ar!alyses was provided by the New Mexico. Bureau of Mines & MineralResources under a cooperative agreement between the two agencies. Lynn Brandvoldand X. W. Foster,with the New MexicoBureau of Minesand NineralResources, provided chemicaland X-ray ana.lysesrespectively of sediment samples. B. E. DeBrine,graduate assistant at New Mexico Institute ofMining and Technology, worked long and irregularhours collecting data for the project. He, alongwith R. G. Hauboldand J. C. Halepaska,did most of the test-hole drilling and well construction onwhich are based the subsurface stratigraphic .correlations and hydrologicinterpretations. Bore-hole logs were runin the test holes by J. D. Hudson of the U.S. Geological Survey. Financialsupport covering travel, part of the drilling costs, and a significant part of salaries. for two years was providedby the Office of WaterResources Research, Department of Interior, through the New Mexico Water Resources Research Institute under grant number B005-WRI-151. S. A. Wengerd, V. C. Kelley,and R. Y. Anderson reviewed an early version script and offered at that time many helpfultechnical and editorialsuggestions. John Hawley critically reviewed the final manuscript. The aid and assistance of these agencies and individuals, and many other unnamed individuals, is most gratefullyacknowledged. The conclusionspresented are the author's own, and do not necessarily coincide with those of all cooperators or reviewers. Frank B. Titus EbascoCorp. New York, New York April 1, 1973 ABSTRACT EstanciaValley, a 2,000-square-mile closed basin in central New Mexico, has since late Pliocene (?) been sequentiallythe site of a) accumulation of several hundred feet of alluvium in a structurally subsiding river'valley, b) two successive late Pleistocenelakes and one shallow Holocenela.ke, and c) several score steep-walled depressions 20 to 40 ft deep,each of which now contains a perennially moist playa. The alluvialunit is here named theEstancia Valleyqormation. Above it is 100 ft of mostly lacustrine sedimenthere named the Dog Lakepormation. The Pliocene (?) and earlyPleistocene Estancia River may haveflowed to the Portales Valley on the Llano Estacado. Early Lake Estancia is correlated with the Terry Pluvial, and Late Lake Estancia with Tahokaand San Jon of the Llano Estacado. The early lake overflowedthe basin'at sill in .. a theelevated river valley. The late lakehad no outflow, and was probably chemically stratified. The playa depressions on the former lake floor were formedmainly by deflation, with the sediment being blown ontogreat dunes east ofeach depression. Playa-depression sites were initially controlled byground-water solution of gypsum in the Yeso Formationbeneath 400 Et of valley fill. Subsidenceextending upward throughthe hydrologic confining beds of the Dog Lake qormation also created permeability paths through which water in the underlying EstanciaValley formation discharged upward to theplayas ' to evaporate. iviu Prior to heavy pumping for irrigation, natural discharge was by a)evaporation from the playas, b)evapo-transpiration from fromsprings.and springs marshes .andmarshes west of the edgeof the lacustrine strata, and c) deepsubsurface leakage to the throughpre-Tertiary +rata. Pumping leakage to the north throughpre-Tertiary +rata. Pumping has dried the springs andmarshes. 1 INTRODUCTION Estancia Valley in central New Mexico haslong been recognized as the site of a Pleistocenelake (Keyes,1903). Early recognition of its lacustrine hi.story was basedon the topographic closure of the basin and theobvious beach remnants that ring the lower parts of the basin sides. While the general nature of the bed”>ock._. geology, structure, and hydrology has been presented in the literature, there are no published detailed studies of the geology of unconsolidatedsediment in the valley. Purposeand Scope The geology of the valley fill andgeomorphology df .. the basin are presentedin terms of two importantshaping forces,,water- and wind. This requires a) a systematrc classification of the materials that have-been deposited in the central part of the basin, b) description of the surface and subsurface features that have been developed by the two fluids, and c) theestablishment’of a chronology of events from basin origin to the present. In contrast to most studies of Pleistocene lakes, i whichdeal mainly with the effects of surface water This 1 study includes consideration of the geologic effects of ground water. The effects offlowing,ground water didnot cease with the disappearance of the lake, and significant modifications of the floor of the basin have takenplace sincethe lake evaporated. The study is limited to phenomena of physicalgeofogy and qualitativephysical andchemical hydrology. No attempt was made during field work to cqllect paleontologic data, but the work of others, particularly Bachhuber, has been invaluable in dating late Pleistocene andHolocene events. Location andGeography Estancia Valley is a topographically closed basin lying in the central part of New Mexico, and,containing approximately 2,000 square miles within its perimeter 0 .(fig. 1). It is approximately bisected bylongitude 106 W., andby' latitude 34O45' N. The valley is about55 miles' long and35 mileswide. Thetown ofMoriarty, in the north-central part of the valley, is about 40 miles east of Albuquerque. The town of Estancia,the county seat for TorranceCounty, is near the west side of the nearly flat valley floor. Economically,Estancia Valley is almost totally dependenton farming and ranching. Irrigated farms were first established in 1941, and sincethen have expanded in area until 1965 when the U.S. Geological Survey estimated that 22,000 acres were underirrigation, and thatannual pumpage ofground water. was about 25,000 acre-ft (Buschand Hudson, 1967,'~.72). The remainder of thevalley is grazing landor, at higherelevations, pinon forest. During the first half of
Recommended publications
  • Isobases of the Algonquin and Iroquois Beaches, and Their Significance1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 21, PP. 227-248, PL. 5 JUNE 10, 1910 ISOBASES OF THE ALGONQUIN AND IROQUOIS BEACHES, AND THEIR SIGNIFICANCE1 BY JAMES WALTER GOl.DTHWAIT (Read before the Society December 28, 1909) CONTENTS Page Introduction ............................................................................................................... 227 The Algonquin w ater-p lan e.................................................................................... 229 Stage recorded by the Algonquin beach.......................................................229 Isobases of the upwarped portion of the Algonquin plane...................... 233 The horizontal portion of the Algonquin plane.......................................... 236 The “hinge line” or “isobase of zero” ............................................................ 239 The Algonquin plane as a datum plane........................................................ 240 The Iroquois w ater-plane........................................................................................ 241 Relative ages of the Iroquois beach and the Algonquin beach..............241 Isobases of the Iroquois plane........................................................................ 242 Comparison of the two water-planes.................................................................... 243 The isobases and the pre-Cambrian boundary.................................................... 245 Summary ....................................................................................................................
    [Show full text]
  • Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States
    Spatially-explicit modeling of modern and Pleistocene runoff and lake extent in the Great Basin region, western United States Yo Matsubara1 Alan D. Howard1 1Department of Environmental Sciences University of Virginia P.O. Box 400123 Charlottesville, VA 22904-4123 Abstract A spatially-explicit hydrological model balancing yearly precipitation and evaporation is applied to the Great Basin Region of the southwestern United States to predict runoff magnitude and lake distribution during present and Pleistocene climatic conditions. The model iteratively routes runoff through, and evaporation from, depressions to find a steady state solution. The model is calibrated with spatially-explicit annual precipitation estimates and compiled data on pan evaporation, mean annual temperature, and total yearly runoff from stations. The predicted lake distribution provides a close match to present-day lakes. For the last glacial maximum the sizes of lakes Bonneville and Lahontan were well predicted by linear combinations of decrease in mean annual temperature from 0 to 6 °C and increases in precipitation from 0.8 to 1.9 times modern values. Estimated runoff depths were about 1.2 to 4.0 times the present values and yearly evaporation about 0.3 to 1 times modern values. 2 1. Introduction The Great Basin of the southwestern United States in the Basin and Range physiographic province contains enclosed basins featuring perennial and ephemeral lakes, playas and salt pans (Fig. 1). The Great Basin consists of the entire state of Nevada, western Utah, and portions of California, Idaho, Oregon, and Wyoming. At present it supports an extremely dry, desert environment; however, about 40 lakes (some reaching the size of present day Great Lakes) episodically occupied the Great Basin, most recently during the last glacial maximum (LGM) [Snyder and Langbein, 1962; Hostetler et al., 1994; Madsen et al., 2001].
    [Show full text]
  • A Great Basin-Wide Dry Episode During the First Half of the Mystery
    Quaternary Science Reviews 28 (2009) 2557–2563 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev A Great Basin-wide dry episode during the first half of the Mystery Interval? Wallace S. Broecker a,*, David McGee a, Kenneth D. Adams b, Hai Cheng c, R. Lawrence Edwards c, Charles G. Oviatt d, Jay Quade e a Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964-8000, USA b Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA c Department of Geology & Geophysics, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, MN 55455, USA d Department of Geology, Kansas State University, Thompson Hall, Manhattan, KS 66506, USA e Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA article info abstract Article history: The existence of the Big Dry event from 14.9 to 13.8 14C kyrs in the Lake Estancia New Mexico record Received 25 February 2009 suggests that the deglacial Mystery Interval (14.5–12.4 14C kyrs) has two distinct hydrologic parts in the Received in revised form western USA. During the first, Great Basin Lake Estancia shrank in size and during the second, Great Basin 15 July 2009 Lake Lahontan reached its largest size. It is tempting to postulate that the transition between these two Accepted 16 July 2009 parts of the Mystery Interval were triggered by the IRD event recorded off Portugal at about 13.8 14C kyrs which post dates Heinrich event #1 by about 1.5 kyrs. This twofold division is consistent with the record from Hulu Cave, China, in which the initiation of the weak monsoon event occurs in the middle of the Mystery Interval at 16.1 kyrs (i.e., about 13.8 14C kyrs).
    [Show full text]
  • Open-File/Color For
    Questions about Lake Manly’s age, extent, and source Michael N. Machette, Ralph E. Klinger, and Jeffrey R. Knott ABSTRACT extent to form more than a shallow n this paper, we grapple with the timing of Lake Manly, an inconstant lake. A search for traces of any ancient lake that inundated Death Valley in the Pleistocene upper lines [shorelines] around the slopes Iepoch. The pluvial lake(s) of Death Valley are known col- leading into Death Valley has failed to lectively as Lake Manly (Hooke, 1999), just as the term Lake reveal evidence that any considerable lake Bonneville is used for the recurring deep-water Pleistocene lake has ever existed there.” (Gale, 1914, p. in northern Utah. As with other closed basins in the western 401, as cited in Hunt and Mabey, 1966, U.S., Death Valley may have been occupied by a shallow to p. A69.) deep lake during marine oxygen-isotope stages II (Tioga glacia- So, almost 20 years after Russell’s inference of tion), IV (Tenaya glaciation), and/or VI (Tahoe glaciation), as a lake in Death Valley, the pot was just start- well as other times earlier in the Quaternary. Geomorphic ing to simmer. C arguments and uranium-series disequilibrium dating of lacus- trine tufas suggest that most prominent high-level features of RECOGNITION AND NAMING OF Lake Manly, such as shorelines, strandlines, spits, bars, and tufa LAKE MANLY H deposits, are related to marine oxygen-isotope stage VI (OIS6, In 1924, Levi Noble—who would go on to 128-180 ka), whereas other geomorphic arguments and limited have a long and distinguished career in Death radiocarbon and luminescence age determinations suggest a Valley—discovered the first evidence for a younger lake phase (OIS 2 or 4).
    [Show full text]
  • The World's Largest Floods, Past and Present: Their Causes and Magnitudes
    fc Cover: A man rows past houses flooded by the Yangtze River in Yueyang, Hunan Province, China, July 1998. The flood, one of the worst on record, killed more than 4,000 people and drove millions from their homes. (AP/Wide World Photos) The World’s Largest Floods—Past and Present By Jim E. O’Connor and John E. Costa Circular 1254 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: O’Connor, J.E., and Costa, J.E., 2004, The world’s largest floods, past and present—Their causes and magnitudes: U.S. Geological Survey Circular 1254, 13 p. iii CONTENTS Introduction. 1 The Largest Floods of the Quaternary Period . 2 Floods from Ice-Dammed Lakes. 2 Basin-Breach Floods. 4 Floods Related to Volcanism. 5 Floods from Breached Landslide Dams. 6 Ice-Jam Floods. 7 Large Meteorological Floods . 8 Floods, Landscapes, and Hazards . 8 Selected References. 12 Figures 1. Most of the largest known floods of the Quaternary period resulted from breaching of dams formed by glaciers or landslides.
    [Show full text]
  • Estanoia. Valley, New Mexico
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIEECTOE WATER-STIPPILY PAPER 275 GEOLOGY AND WATER RESOURCES OF ESTANOIA. VALLEY, NEW MEXICO WITH NOTES ON GROUND-WATER CONDITIONS IN ADJACENT PARTS OF CENTRAL NEW MEXICO BY OSCAR E. MEINZER WASHINGTON GOVERNMENT PRINTING OFFICE 1911 CONTENTS. GEOLOGY AND WATER RESOURCES OF ESTANCIA VALLEY. Page. Introduction................................................................ 7 Location and area....................................................... 7 Geographic relations................ I................................... 8 Development.......................................................... 8 Field work............................................................. 8 Physiography.............................................................. 8 Mountains, hills, and mesas ............................................. 8 Alluvial slopes and arroyos............................................... 10 Ancient lake bed........................................................ 10 Salt basins and clay hills................................................. 11 Geology.................................................................... 11 Rock formations.......................,................................... 11 Metamorphic and igneous rocks....................................... 11 Carboniferous rocks.................................................. 12 Cretaceous rocks..................................................... 15 Valley fill..............................................................
    [Show full text]
  • Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) G-I in the Western States As Jz;
    o 00 o H Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) g-i in the Western States as Jz; GEOLOGICAL SURVEY BULLETIN 1080 02 O PH O z eq P S3 Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) in the Western States By JOHN H. FETH GEOLOGICAL SURVEY BULLETIN 1080 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 119. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract_________._.______-___--__--_---__-_-_------.--_-_-_-__ 1 Introduction.________________________----_-_-____--__-__---._-___- 2 Definitions__ _ _____________--__-_-_--__--_--___-___-___---______ 13 Maps.._____-_______--_-__--------------------------------------- 13 Criteria for the recognition of lake deposits. __-_______.___-_-__.-_____ 17 Definitive criteria____ _ _____-____-__-________---_-___-----_._ 17 Fossils. _-_--____---__-_.---_-------_-----__-_------_. 17 Evaporite deposits..._-_------_------_-------_--------_---. 20 Shore features_________---__-_-------__-_---_-_-_--_-_--_ 21 Suggestive criteria.______.-_-_--___-____---_.-____-__-____.--_. 21 Regional relations._.._-_..-____-..--...__..._..._._.._.... 21 Local evidence.___-__---_--------_--__---_-----_--------__ 22 Grain size, bedding, and lamination...._._.____.___.___.
    [Show full text]
  • The Great Bonneville Flood
    IDAHO STATE HISTORICAL SOCIETY REFERENCE SERIES THE GREAT BONNEVILLE FLOOD Number 98 Revised January 1995 Until around 10,000 to 12,000 years ago, North America had a climate much colder and wetter than today. Lake Bonneville covered much of Utah and Nevada, and other great lakes occupied much of the present desert areas of the Great Basin. A continental ice sheet (the most recent of a series of four great ice sheets that periodically advanced and melted) covered much of the Great Plains far to the north and east. Snake River ran much larger than today, and until some 34,000 years ago Bear River ran through Portneuf Canyon into Snake River. Then intermittent lava flows west of Soda Springs gradually blocked Bear River. This formed a lake that overflowed into Lake Bonneville, which got several hundred feet deeper. Sometime later than 14,500 years ago, Lake Bonneville began to overflow through Red Rock Pass into Snake River. Once that happened, the Red Rock channel into Snake River deepened very quickly. Lake Bonneville drained down some 60 or more feet to a level of about 5,085 feet. Then over a long period of time, Bonneville River kept on flowing into Snake River, cutting a deeper channel in Red Rock Pass. Finally, Lake Bonneville got down to the 4,775 foot level. From that point on, the lake evaporated faster than water flowed in, and no longer had an outlet into Snake River. This entire discharge did not come in one single stage, but at the beginning, a catastrophic flood poured out of Lake Bonneville.
    [Show full text]
  • Pluvial Lakes in the Great Basin of the Western United States-A View From
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262806093 Pluvial lakes in the Great Basin of the western United States—a view from the outcrop Article in Quaternary Science Reviews · August 2014 DOI: 10.1016/j.quascirev.2014.04.012 CITATIONS READS 28 172 4 authors, including: Marith C. Reheis United States Geological Survey 119 PUBLICATIONS 3,485 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: fun in retirement! View project Tephrochronology Project View project All content following this page was uploaded by Marith C. Reheis on 26 April 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Quaternary Science Reviews 97 (2014) 33e57 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Pluvial lakes in the Great Basin of the western United Statesda view from the outcrop Marith C. Reheis a,*, Kenneth D. Adams b, Charles G. Oviatt c, Steven N. Bacon b a U.S. Geological Survey, MS-980, Federal Center Box 25046, Denver, CO 80225, USA b Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA c Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, KS 66506, USA article info abstract Article history: Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and Received 1 March 2013 drainage-basin change at multiple time scales extending back to the Miocene.
    [Show full text]
  • River Incision, Circulation, and Wind Regime of Pleistocene Lake Bonneville, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 293 (2010) 41–50 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo River incision, circulation, and wind regime of Pleistocene Lake Bonneville, USA Paul W. Jewell Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, United States article info abstract Article history: Pleistocene Lake Bonneville of the western U.S. and its associated alluvial systems present a unique Received 26 January 2010 opportunity to understand the relationship between prevailing winds of the time, lake circulation, and river Received in revised form 22 April 2010 incision. The lake underwent a catastrophic flooding event ∼18,300 yr B.P. resulting in the incision of Accepted 26 April 2010 streams entering the lake along its eastern border. Incision patterns of twelve streams and rivers suggest that Available online 31 May 2010 they were influenced by the prevailing circulation in the lake at the time. In order to match patterns of river incisions, simulations of lake circulation were performed with a state-of-the-art numerical model for the Keywords: Great Basin maximum transgressive (Bonneville) lake elevation. Simulations were conducted using the forcing of Lake Bonneville westerly and easterly prevailing winds. Simulated circulation can be described in terms of simple Pleistocene climate geostrophic balances in which the currents are generally cyclonic (counter clockwise) for westerly winds Paleowinds and anti-cyclonic (clockwise) for easterly winds. Irregularities in lake shorelines and bathymetry cause localized variation of this general pattern. Comparison of model output with the deflected stream incision patterns suggest that prevailing winds during the Pleistocene in the Great Basin of North America were westerly and that, unlike the interior of North America, the continental ice sheet did not exert significant influence on the climatological wind patterns of the Great Basin.
    [Show full text]
  • Investigations of Glacial Lake Musselshell
    EXTENT AND TIMING OF LAURENTIDE GLACIAL LAKE MUSSELSHELL, CENTRAL MONTANA by Nicole Kristina Davis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana July 2004 © COPYRIGHT by Nicole Kristina Davis 2004 All Rights Reserved ii APPROVAL of a thesis submitted by Nicole Kristina Davis This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. William W. Locke Approved for the Department of Earth Sciences Dr. David R. Lageson Approved for the College of Graduate Studies Dr. Bruce McLeod iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Nicole K. Davis July 15, 2004 iv ACKNOWLEDGEMENTS This thesis would not have been possible without the support, advice and patience of a great number of people. Roger Colton, Dave Fullerton, and Bill Johnson from the US Geological Survey were especially helpful and provided materials and information that were central to the project.
    [Show full text]
  • Cold Regions Research and Engineering Laboratory
    US Army Corps of Engineers® Engineer Research and Development Center Lake Thompson, Mojave Desert, California A Desiccating Late Quaternary Lake System ERDC/CRREL TR-04-1 Antony R. Orme January 2004 Cold Regions Research and Engineering Laboratory Approved for public release; distribution is unlimited. Front cover: High-resolution aerial photograph taken northwest of Buckhorn Playa showing stabilized dunes adjacent to exposures of the Pleistocene Lake Thompson lakebed as small playas. The photography was obtained during a NASA research flight collecting LIDAR topographic data for CRREL. ERDC/CRREL TR-04-1 January 2004 Lake Thompson, Mojave Desert, California A Desiccating Late Quaternary Lake System Antony R. Orme Department of Geography University of California, Los Angeles Los Angeles, California 90095-1524 Clay-mineral analysis by Richard Yuretich Approved for public release; distribution is unlimited. Prepared for EDWARDS AIR FORCE BASE ABSTRACT In late Pleistocene time, Lake Thompson rose to 710 m above sea level and covered 950 km2 of the western Mojave Desert, California. During Holocene time, the lake desiccated and is today represented mainly by Rogers, Rosamond, and Buckhorn Dry Lakes, which cover 200 km2 of Edwards Air Force Base. Elsewhere the former lake basin is characterized by exposed lake beds and beach ridges or mantled by aeolian and fluvial deposits. This study reports on the spatial and temporal components of former Lake Thompson. The spatial dimension identifies seven major geomorphic and lithostratigraphic units within the former lake basin, of which the most important are the modern playa, former lake system, aeolian mantle, interfingering fluvial deposits, and various bedrock outcrops. These units and their subdivisions are presented on a map entitled Geomorphology and Quaternary Geology of Lake Thompson within Edwards Air Force Base, California.
    [Show full text]