University of Nevada, Reno Reconciling Western Toad

Total Page:16

File Type:pdf, Size:1020Kb

University of Nevada, Reno Reconciling Western Toad University of Nevada, Reno Reconciling Western toad phylogeography with Great Basin prehistory A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geography by Pete M. Noles Dr. Jill S. Heaton/Thesis Advisor December, 2010 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by PETE M. NOLES entitled Reconciling Western toad phylogeography with Great Basin prehistory be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Jill S. Heaton, Ph.D., Advisor Scott A. Mensing, Ph.D., Committee Member Kenneth E. Nussear, Ph.D., Committee Member C. Richard Tracy, Ph.D., Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School December, 2010 i ABSTRACT This study marks the first attempt to study historical processes that may be responsible for the contemporary geographic distribution and phylogeny of Great Basin Western toads (Anaxyrus boreas spp.). The dynamic aquatic history of the Great Basin was evaluated as a potential model for early toad dispersal into regions which would later become arid and isolated, affecting gene flow and eventually promoting allopatric speciation. This research was accomplished by exploring the spatial and historical relationships among Western toad clades and Great Basin drainages. Toad clades that are distributed over large areas, and are composed of many populations, tend to fall within the confines of regional, riverine drainages. Smaller, more genetically distant clades are generally harbored in small, riverless drainage basins. Dates of estimated evolutionary divergence among Western toad clades varied considerably using rates of molecular substitution that are reasonable for this organism. In addition, aquatic histories contain last known dates of interbasin connectivity that are well within the range of toad evolutionary divergence times reported here. Although the specific dates presented in this study encourage further refinement, this study suggests that the relative ages of Western toad clades are positively related with their geographic isolation. These results suggest that the evolutionary history of the Western toad may have been affected by prehistoric environments dominated by glacial cycles. This information can be used to inform strategies used by wildlife managers to catalog and protect unique biodiversity. ii ACKNOWLEDGEMENTS I would like to thank my advisor, Jill S. Heaton, and my advisory committee, Scott A. Mensing, Kenneth E. Nussear, and C. Richard Tracy for their intellectual contributions to this research. The previous field and lab studies that eventually led to this thesis was completed in collaboration with colleagues: Mo Beck, Bobby Espinoza, Robert Fisher, Matt Forister, John Gray, Bridgette Hagerty, Fran Sandmeier, and Eric Simandle. I would like to especially acknowledge Ken Adams, Brian Horton, Marith Reheis, Donald Sada, and Alan Wallace for participating in discussions that were invaluable to my understanding of Great Basin aquatic histories. The U.S. Fish & Wildlife Service, and the U.S. Geological Survey provided generous financial support. I would like to thank my friends and family for their support throughout my years in graduate school: my parents, Rick & Bonnie Noles, my grandparents, Richard & Patricia Noles, and Lily Mathieu, my brother, Garrett Noles, and my dear friends, Tim & Pam Alpers, Amy Barber, Ankur Goyal, Brigitte Peterson, Seth Taylor, and Stephanie Wakeling. The rural residents of Nevada also deserve recognition here for ensuring that "school didn't get in the way of my education", particularly: Shirley Harlan, Dave & Bobbie Murphey, Durk Pearson, Lina Sharp, and Dave Spicer. Finally, I would like thank my High School geometry teacher and friend, Mr. Tom Beveridge, for teaching me the meaning of perseverance. iii Table of Contents INTRODUCTION .............................................................................................................. 1 METHODS ......................................................................................................................... 5 Study Area ...................................................................................................................... 6 Clade Mapping ................................................................................................................ 7 Watershed Mapping ........................................................................................................ 8 Estimating Divergence Times ......................................................................................... 8 RESULTS ........................................................................................................................... 9 Clade Mapping ................................................................................................................ 9 Watershed Mapping ...................................................................................................... 10 1. The Northwest Basins ..................................................................................... 10 2. The Lahontan Basin ........................................................................................ 10 3. The Manly Basin ............................................................................................ 11 4. The Railroad Basin ......................................................................................... 11 5. Fish Lake Valley ............................................................................................. 11 Area of Sterile Basins ......................................................................................... 12 Closed Isolated Basins ....................................................................................... 12 Evolutionary Divergence Times ................................................................................... 13 Basin Histories .............................................................................................................. 13 The Mono Basin "Switching Yard" .......................................................................... 13 Dixie Valley & Fish Lake Valley ............................................................................. 15 The San Joaquin Connection .................................................................................... 16 Railroad Valley ......................................................................................................... 16 Oregon....................................................................................................................... 18 Isolated and Relict Dace Basins ................................................................................ 19 DISCUSSION ................................................................................................................... 19 Absolute vs. Relative Dates .......................................................................................... 19 Important Caveats to Analyses ..................................................................................... 20 Sampling Recommendations ........................................................................................ 23 Conclusions ................................................................................................................... 24 REFERENCES ................................................................................................................. 26 FIGURES AND TABLES ................................................................................................ 32 FIGURE 1: Western toad range in North America. ...................................................... 32 iv FIGURE 2: Great Basin Western toad clades. .............................................................. 34 FIGURE 3: Great Basin morphological regions. .......................................................... 36 FIGURE 4: Principal pluvial drainage basins. .............................................................. 38 FIGURE 5: The.Mono Basin switching yard ............................................................... 40 FIGURE 6: Southern expansion of Lake Lahontan towards Fish Lake Valley ............ 42 FIGURE 7:.Eastern expansion of Lake Lahontan into Dixie Valley............................ 44 FIGURE 8: Pre-Pleistocene Mono Basin to San Joaquin drainage link. ...................... 46 FIGURE 9:.Miocene corridors between Railroad Valley and the White River ........... 48 FIGURE 10:.Closed, isolated drainages around an "Area of Sterile Basins" ............... 50 FIGURE 11:.Relative clade ages vs geographic isolation ............................................ 51 TABLE 1:.Estimated Western toad evolutionary divergence times (slow rate) ........... 53 TABLE 2: Estimated Western toad evolutionary divergence times (fast rate) ............ 54 1 INTRODUCTION The Western toad species group (Anaxyrus boreas spp.), as currently recognized (Stebbins, 2003; Frost, 2007), is composed of two broadly distributed subspecies and three localized species. The geographic range of Anaxyrus boreas (Baird and Girard, 1852) extends from the eastern slopes of the Rocky Mountains to the Pacific Ocean, and from northern Baja California to Alaska and the Yukon (Figure 1). The subspecies A. b. boreas inhabits most of this range (Baird and Girard, 1852), and A. b. halophilus (Baird and Girard, 1852) is distributed in southern California (largely south of the Tehachapi Mountains) and
Recommended publications
  • Species Assessment for Boreal Toad (Bufo Boreas Boreas)
    SPECIES ASSESSMENT FOR BOREAL TOAD (BUFO BOREAS BOREAS ) IN WYOMING prepared by 1 2 MATT MCGEE AND DOUG KEINATH 1 Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3023 2 Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] drawing by Summers Scholl prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming March 2004 McGee and Keinath – Bufo boreas boreas March 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphological Description ...................................................................................................... 4 Taxonomy and Distribution ..................................................................................................... 5 Habitat Requirements............................................................................................................. 8 General ............................................................................................................................................8 Spring-Summer ...............................................................................................................................9
    [Show full text]
  • ENDANGERED SPECIES: Groups Petition FWS to List Amargosa Toad (02/28/2008)
    ENDANGERED SPECIES: Groups petition FWS to list Amargosa toad (02/28/2008) April Reese, Land Letter Western reporter The Amargosa toad should be added to the federal endangered species list, according to a petition filed Tuesday with the U.S. Fish and Wildlife Service by environmental groups. In their petition, filed Feb. 26, the Center for Biological Diversity and Public Employees for Environmental Responsibility argue that urban development, water diversions and increased off- road vehicle use throughout the toad's range in Nevada's Oasis Valley have pushed the species toward extinction. According to the groups, the Amargosa toad is already restricted to a 10-mile stretch of the Amargosa River -- one of Nevada's last free- flowing rivers -- and adjacent desert uplands. "It only has a small amount of habitat," said Daniel Patterson, PEER's southwest director, who formerly worked for the Bureau of Land Management in Nevada as an ecologist. "It's got no where to go. There's really no room for error." FWS considered listing the toad in the 1990s after receiving a petition from environmental groups but decided the species did not warrant Males tend to be smaller, reaching 3 to 4 inches, while federal protection. At the time, FWS concluded females may reach 3.5 to 5 inches. Unlike most frogs and toads, the Amargosa toad is voiceless except for “release that the toad was more widespread than the calls” or chirps made by males when grasped below their petition suggested, although it also said more forelimbs by another toad or human. Photo courtesy of FWS.
    [Show full text]
  • Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
    Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone.
    [Show full text]
  • Western Toad Taxonomy Description
    WESTERN TOAD TAXONOMY Scientific name: Bufo boreas (Baird and Girard, 1852) Common name: Western toad Family: Bufonidae Taxonomic comments: Hybridizes with the red-spotted toad (Bufo punctatus) at Darwin Falls, Inyo County, California, and sometimes with Canadian toad (B. hemiophrys) in central Alberta. B. nelsoni was formerly included in this species. Molecular data indicate that B.exsul is phylogenetically nested within B. canorus; further data are needed to determine whether B. exsul should be subsumed with B. canorus (Shaffer et al. 2000). "Stephens (2001) examined mitochondrial DNA from 8 Yosemite toads (selected from the samples examined by Shaffer et al. (2000) to represent the range of variability found in that study) and 173 western toads. Stephens' data indicate that Bufo in the Sierra Nevada occur in northern and southern evolutionary groups, each of which include both Yosemite and western toads (i.e., toads of both species are more closely related to each other within a group than they are to members of their own species in the other group). Further genetic analysis of Yosemite toads sampled from throughout their range, and from other toad species surrounding their range is needed to fully understand the evolutionary history and appropriate taxonomic status of the Yosemite toad." (USFWS 2002). DESCRIPTION Basic description: A toad. General description: A chunky, short-legged, warty amphibian with dominant parotoid glands at the back of the head and a conspicuous light-colored stripe running down the middle of the back. Coloration varies from brown, green to gray above and white with dark mottling below. Females are usually larger, more blotched, and have rougher skin than males (Hodge 1976, MacDonald 2003).
    [Show full text]
  • Isobases of the Algonquin and Iroquois Beaches, and Their Significance1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 21, PP. 227-248, PL. 5 JUNE 10, 1910 ISOBASES OF THE ALGONQUIN AND IROQUOIS BEACHES, AND THEIR SIGNIFICANCE1 BY JAMES WALTER GOl.DTHWAIT (Read before the Society December 28, 1909) CONTENTS Page Introduction ............................................................................................................... 227 The Algonquin w ater-p lan e.................................................................................... 229 Stage recorded by the Algonquin beach.......................................................229 Isobases of the upwarped portion of the Algonquin plane...................... 233 The horizontal portion of the Algonquin plane.......................................... 236 The “hinge line” or “isobase of zero” ............................................................ 239 The Algonquin plane as a datum plane........................................................ 240 The Iroquois w ater-plane........................................................................................ 241 Relative ages of the Iroquois beach and the Algonquin beach..............241 Isobases of the Iroquois plane........................................................................ 242 Comparison of the two water-planes.................................................................... 243 The isobases and the pre-Cambrian boundary.................................................... 245 Summary ....................................................................................................................
    [Show full text]
  • The Structure of the Herpetofaunal Assemblage in the Douglas-Fir/Hardwood Forests of Northwestern California and Southwestern Oregon
    The Structure of the Herpetofaunal Assemblage in the Douglas-Fir/Hardwood Forests of Northwestern California and Southwestern Oregon Hartwell H. Welsh, Jr., and Amy J. Lind Authors structural components associated with older forests were the best predictors of increased numbers of salamanders. Anal- HARTWELL H. WELSH, JR., and AMY J. LIND are wild- yses of microhabitat associations indicated that large, well- life biologists, U.S. Department of Agriculture, Forest Serv- decayed logs were the most heavily used woody debris, ice, Pacific Southwest Forest and Range Experiment Station, though use of particular size- and decay-classes varied Arcata, California 95521. among salamander species. Abstract Harvesting forests without immediately affecting herpe- Terrestrial and aquatic herpetofauna were sampled by three tofauna is probably not possible; however, strategies can be methods, time-constrained searches, pitfall traps, and area- developed to minimize long-term adverse effects. We pro- constrained searches from 1984 to 1986 in northwestern vide a summary of management recommendations designed California and southwestern Oregon. The 54 terrestrial and to assure long-term viablity of herpetofauna in areas subject 39 aquatic study sites were in Douglas-fir/hardwood forest to logging. stands that ranged in age from 30 to 560 years. Results of these surveys are presented in terms of species richness, Introduction equitability, relative abundance, relative biomass, and Old-growth forests are a unique and complex ecosystem macrohabitat and microhabitat associations. where many life forms occur in numbers disproportionate to their occurrence in other parts of their range (Thomas and Although species richness did not differ among forest age- others 1988), but the nature of the ecological dependencies classes, the composition of the herpetofauna was notably (Ruggiero and others 1988) between these species and the different.
    [Show full text]
  • Cyprinodon Nevadensis Mionectes Ash Meadows Amargosa Pupfish
    Ash Meadows Amargosa pupfsh Cyprinodon nevadensis mionectes WAP 2012 species due to impacts from introduced detrimental aquatc species, habitat degradaton, and federal endangered status. Agency Status NV Natural Heritage G2T2S2 USFWS LE BLM-NV Sensitve State Prot Threatened Fish NAC 503.065.3 CCVI Presumed Stable TREND: Trend is stable to increasing with contnued on-going restoraton actvites. DISTRIBUTION: Springs and associated springbrooks, outlow stream systems and terminal marshes within Ash Meadows Natonal Wildlife Refuge, Nye Co., NV. GENERAL HABITAT AND LIFE HISTORY: This species is isolated to warm springs and outlows in Ash Meadows NWR including Point of Rocks, Crystal Springs, and the Carson Slough drainage. Pupfshes feed generally on substrate; feeding territories are ofen defended by pupfshes. Diet consists of mainly algae and detritus however, aquatc insects, crustaceans, snails and eggs are also consumed. Spawning actvity is typically from February to September and in some cases year round. Males defend territories vigorously during breeding season (Soltz and Naiman 1978). In warm springs, fsh may reach sexual maturity in 4-6 weeks. Reproducton variable: in springs, pupfsh breed throughout the year, may have 8-10 generatons/year; in streams, breeds in spring and summer, 2-3 generatons/year (Moyle 1976). In springs, males establish territories over sites suitable for ovipositon. Short generaton tme allows small populatons to be viable. Young adults typically comprise most of the biomass of a populaton. Compared to other C. nevadensis subspecies, this pupfsh has a short deep body and long head with typically low fn ray and scale counts (Soltz and Naiman 1978). CONSERVATION CHALLENGES: Being previously threatened by agricultural use of the area (loss and degradaton of habitat resultng from water diversion and pumping) and by impending residental development, the TNC purchased property, which later became the Ash Meadows NWR.
    [Show full text]
  • Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States
    Spatially-explicit modeling of modern and Pleistocene runoff and lake extent in the Great Basin region, western United States Yo Matsubara1 Alan D. Howard1 1Department of Environmental Sciences University of Virginia P.O. Box 400123 Charlottesville, VA 22904-4123 Abstract A spatially-explicit hydrological model balancing yearly precipitation and evaporation is applied to the Great Basin Region of the southwestern United States to predict runoff magnitude and lake distribution during present and Pleistocene climatic conditions. The model iteratively routes runoff through, and evaporation from, depressions to find a steady state solution. The model is calibrated with spatially-explicit annual precipitation estimates and compiled data on pan evaporation, mean annual temperature, and total yearly runoff from stations. The predicted lake distribution provides a close match to present-day lakes. For the last glacial maximum the sizes of lakes Bonneville and Lahontan were well predicted by linear combinations of decrease in mean annual temperature from 0 to 6 °C and increases in precipitation from 0.8 to 1.9 times modern values. Estimated runoff depths were about 1.2 to 4.0 times the present values and yearly evaporation about 0.3 to 1 times modern values. 2 1. Introduction The Great Basin of the southwestern United States in the Basin and Range physiographic province contains enclosed basins featuring perennial and ephemeral lakes, playas and salt pans (Fig. 1). The Great Basin consists of the entire state of Nevada, western Utah, and portions of California, Idaho, Oregon, and Wyoming. At present it supports an extremely dry, desert environment; however, about 40 lakes (some reaching the size of present day Great Lakes) episodically occupied the Great Basin, most recently during the last glacial maximum (LGM) [Snyder and Langbein, 1962; Hostetler et al., 1994; Madsen et al., 2001].
    [Show full text]
  • A Great Basin-Wide Dry Episode During the First Half of the Mystery
    Quaternary Science Reviews 28 (2009) 2557–2563 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev A Great Basin-wide dry episode during the first half of the Mystery Interval? Wallace S. Broecker a,*, David McGee a, Kenneth D. Adams b, Hai Cheng c, R. Lawrence Edwards c, Charles G. Oviatt d, Jay Quade e a Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964-8000, USA b Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA c Department of Geology & Geophysics, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, MN 55455, USA d Department of Geology, Kansas State University, Thompson Hall, Manhattan, KS 66506, USA e Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA article info abstract Article history: The existence of the Big Dry event from 14.9 to 13.8 14C kyrs in the Lake Estancia New Mexico record Received 25 February 2009 suggests that the deglacial Mystery Interval (14.5–12.4 14C kyrs) has two distinct hydrologic parts in the Received in revised form western USA. During the first, Great Basin Lake Estancia shrank in size and during the second, Great Basin 15 July 2009 Lake Lahontan reached its largest size. It is tempting to postulate that the transition between these two Accepted 16 July 2009 parts of the Mystery Interval were triggered by the IRD event recorded off Portugal at about 13.8 14C kyrs which post dates Heinrich event #1 by about 1.5 kyrs. This twofold division is consistent with the record from Hulu Cave, China, in which the initiation of the weak monsoon event occurs in the middle of the Mystery Interval at 16.1 kyrs (i.e., about 13.8 14C kyrs).
    [Show full text]
  • Open-File/Color For
    Questions about Lake Manly’s age, extent, and source Michael N. Machette, Ralph E. Klinger, and Jeffrey R. Knott ABSTRACT extent to form more than a shallow n this paper, we grapple with the timing of Lake Manly, an inconstant lake. A search for traces of any ancient lake that inundated Death Valley in the Pleistocene upper lines [shorelines] around the slopes Iepoch. The pluvial lake(s) of Death Valley are known col- leading into Death Valley has failed to lectively as Lake Manly (Hooke, 1999), just as the term Lake reveal evidence that any considerable lake Bonneville is used for the recurring deep-water Pleistocene lake has ever existed there.” (Gale, 1914, p. in northern Utah. As with other closed basins in the western 401, as cited in Hunt and Mabey, 1966, U.S., Death Valley may have been occupied by a shallow to p. A69.) deep lake during marine oxygen-isotope stages II (Tioga glacia- So, almost 20 years after Russell’s inference of tion), IV (Tenaya glaciation), and/or VI (Tahoe glaciation), as a lake in Death Valley, the pot was just start- well as other times earlier in the Quaternary. Geomorphic ing to simmer. C arguments and uranium-series disequilibrium dating of lacus- trine tufas suggest that most prominent high-level features of RECOGNITION AND NAMING OF Lake Manly, such as shorelines, strandlines, spits, bars, and tufa LAKE MANLY H deposits, are related to marine oxygen-isotope stage VI (OIS6, In 1924, Levi Noble—who would go on to 128-180 ka), whereas other geomorphic arguments and limited have a long and distinguished career in Death radiocarbon and luminescence age determinations suggest a Valley—discovered the first evidence for a younger lake phase (OIS 2 or 4).
    [Show full text]
  • Species Status Assessment Report for the Eastern Population of The
    Species Status Assessment Report for the Eastern Population of the Boreal Toad, Anaxyrus boreas boreas Prepared by the Western Colorado Ecological Services Field Office U.S. Fish and Wildlife Service, Grand Junction, Colorado EXECUTIVE SUMMARY This species status assessment (SSA) reports the results of the comprehensive biological status review by the U.S. Fish and Wildlife Service (Service) for the Eastern Population of the boreal toad (Anaxyrus boreas boreas) and provides a thorough account of the species’ overall viability and, therefore, extinction risk. The boreal toad is a subspecies of the western toad (Anaxyrus boreas, formerly Bufo boreas). The Eastern Population of the boreal toad occurs in southeastern Idaho, Wyoming, Colorado, northern New Mexico, and most of Utah. This SSA Report is intended to provide the best available biological information to inform a 12-month finding and decision on whether or not the Eastern Population of boreal toad is warranted for listing under the Endangered Species Act (Act), and if so, whether and where to propose designating critical habitat. To evaluate the biological status of the boreal toad both currently and into the future, we assessed a range of conditions to allow us to consider the species’ resiliency, redundancy, and representation (together, the 3Rs). The boreal toad needs multiple resilient populations widely distributed across its range to maintain its persistence into the future and to avoid extinction. A number of factors influence whether boreal toad populations are considered resilient to stochastic events. These factors include (1) sufficient population size (abundance), (2) recruitment of toads into the population, as evidenced by the presence of all life stages at some point during the year, and (3) connectivity between breeding populations.
    [Show full text]
  • Invasive Weeds Threaten Rare Toad and a Small Town's Economy
    INVASIVE WEED AWARENESS COALITION (IWAC) Invasive Weeds Threaten Rare Toad and a Small Town’s Economy n 1994, residents near Nevada’s Oasis Valley learned that a native amphibian, the Amargosa Toad, had been nominated for the endangered species list. As the only habitat where the small, rare toad resides, Oasis Valley is home to the one of the few wet portions of the United States’ longest under- ground river, the Amargosa. The 12-mile stretch of river provides shallow, clear water that the toad needs to live and reproduce. Increasing infestations of invasive weeds threaten this water supply and its unique Rare Amargosa Toads call the Oasis Valley home. inhabitant. Challenge: With a grant from the National Association of ILocated near the town of Beatty, Nevada, the Counties (NACO), the groups are implementing a Oasis Valley area has a long history of ranching comprehensive weed management plan to and mining. Placing the Amargosa Toad on the re-establish a natural habitat and educate the endangered species list would put many residents’ community about the situation. In particular, the livelihoods at risk. Caught between the desire to plan is targeting two non-native weeds — saltcedar save the Amargosa Toad from extinction and the (Tamarix ramosissima), and Russian olive (Elaeagnus need to protect the area’s economic well-being, angustifolia) — that stand out as the greatest residents needed to act quickly to find a viable threats to the river’s water supply. These two inva- solution for all involved. sive weeds can crowd out native vegetation and consume massive amounts of water.
    [Show full text]