Analysis of the Cosmic Ray Effects on Sentinel-1 SAR Satellite Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Modulation Effect on Galactic Cosmic Rays
Solar Modulation Effect On Galactic Cosmic Rays Cristina Consolandi – University of Hawaii at Manoa Nov 14, 2015 Galactic Cosmic Rays Voyager in The Galaxy The Sun The Sun is a Star. It is a nearly perfect spherical ball of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. 3 The Sun & The Heliosphere The heliosphere contains the solar system GCR may penetrate the Heliosphere and propagate trough it by following the Sun's magnetic field lines. 4 The Heliosphere Boundaries The Heliosphere is the region around the Sun over which the effect of the solar wind is extended. 5 The Solar Wind The Solar Wind is the constant stream of charged particles, protons and electrons, emitted by the Sun together with its magnetic field. 6 Solar Wind & Sunspots Sunspots appear as dark spots on the Sun’s surface. Sunspots are regions of strong magnetic fields. The Sun’s surface at the spot is cooler, making it looks darker. It was found that the stronger the solar wind, the higher the sunspot number. The sunspot number gives information about 7 the Sun activity. The 11-year Solar Cycle The solar Wind depends on the Sunspot Number Quiet At maximum At minimum of Sun Spot of Sun Spot Number the Number the sun is Active sun is Quiet Active! 8 The Solar Wind & GCR The number of Galactic Cosmic Rays entering the Heliosphere depends on the Solar Wind Strength: the stronger is the Solar wind the less probable would be for less energetic Galactic Cosmic Rays to overcome the solar wind! 9 How do we measure low energy GCR on ground? With Neutron Monitors! The primary cosmic ray has enough energy to start a cascade and produce secondary particles. -
The Primordial Earth: Hadean and Archean Eons
5th International Symposium on Strong Electromagnetic Fields and Neutron Stars 10 –13 of May, 2017 -Varadero, Cuba HABITABILITY OF THE MILKY WAY REVISITED Rolando Cárdenas and Rosmery Nodarse-Zulueta e-mail: [email protected] Planetary Science Laboratory Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba Abstract • The discoveries of the last three decades on deep sea and deep crust of planet Earth show that life can thrive in many places where solar radiation does not reach, using chemosynthesis instead of photosynthesis for primary production. • Underground life is relatively well protected from hazardous ionizing cosmic radiation, so above mentioned discoveries reopen the habitability budget of the Milky Way, turning potentially habitable even planetary bodies without atmosphere. • Considering this, in this work the habitability potential of the Milky Way is reconsidered. Energy Sources for Primary Habitability: - Photosynthesis: Electromagnetic Waves, mostly in the range 400-700 nm. Dominant in planetary surface. - Chemosynthesis: Energy released by redox chemical reactions. Dominant in deep sea and crust. Circumstellar Habitable Zone https://en.wikipedia.org/wiki/Circumstellar_habitable_zone. Accessed on 2017.04.28 Liquid water at surface: biased towards surface (photosynthetic) life Chemosynthesis: More common than previously thought… - Any redox process giving at least 20 kJ/mol of free energy can support microbial metabolism. The following gives 794 kJ/mol: Pohlman, J.: The biogeochemistry of anchialine caves: -
SIDE GROUP ADDITION to the POLYCYCLIC AROMATIC HYDROCARBON CORONENE by PROTON IRRADIATION in COSMIC ICE ANALOGS Max P
The Astrophysical Journal, 582:L25–L29, 2003 January 1 ᭧ 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. SIDE GROUP ADDITION TO THE POLYCYCLIC AROMATIC HYDROCARBON CORONENE BY PROTON IRRADIATION IN COSMIC ICE ANALOGS Max P. Bernstein,1,2 Marla H. Moore,3 Jamie E. Elsila,4 Scott A. Sandford,2 Louis J. Allamandola,2 and Richard N. Zare4 Received 2002 July 23; accepted 2002 November 5; published 2002 December 6 ABSTRACT ∼ Ices at 15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1 : 100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmission- reflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization mass spectrometry. Just as in the case of UV photolysis, oxygen atoms are added to coronene, yielding, in the case of H2O ices, the addition of one or more alcohol (i OH) and ketone (1CuO) side chains to the coronene scaffolding. There are, however, significant differences between the products formed by proton irradiation and the products formed by UV photolysis of coronene containing CO and CO2 ices. The formation of a coronene carboxylic i acid ( COOH) by proton irradiation is facile in solid CO but not in CO2, the reverse of what was previously observed for UV photolysis under otherwise identical conditions. This work presents evidence that cosmic- ray irradiation of interstellar or cometary ices should have contributed to the formation of aromatics bearing ketone and carboxylic acid functional groups in primitive meteorites and interplanetary dust particles. -
Cosmic-Ray Soil Water Monitoring: the Development, Status & Potential of the COSMOS- India Network Ross Morrison, J
Cosmic-ray soil water monitoring: the development, status & potential of the COSMOS- India network Ross Morrison, J. G. Evans, S. S. Angadi, L. Ball, T. Chakraborty, H. Cooper, M. Fry, G. Geet, M. Goswami, N. Ganeshi, O. Hitt, S. Jain, M. Krishnan, R. Krishnan, A. Kumar, M. Mujumdar, M. Nema, G. Rees, M. Sekhar, O. Swain, R. Thayyen, S. Tripathi, D. Upadhyaya & A. Jenkins COSMOS-India: outline o Background & rationale o Basics of measurement principle o COSMOS-India network & sites o Selected results o Future work COSMOS-India: objectives o Collaborative development of soil moisture (SM) network in India using cosmic ray (COSMOS) sensors o Deliver high temporal frequency SM observations at the intermediate spatial scale in near real-time o Development of national COSMOS-India data system & near real time data portal o Integrate with Earth Observation datasets for validated SM maps of India o Empower many other applications… Acknowledgment: other COSMOS networks cosmos.hwr.arizona.edu cosmos.ceh.ac.uk Why measure soil moisture (SM)? o Controls exchanges of energy & mass between land surface & atmosphere o Hydrology: controls evapotranspiration, partitioning between runoff & infiltration, groundwater recharge o Meteorology: partitioning solar energy into sensible, latent & soil heat fluxes, surface-boundary layer interactions o Plant growth & soil biogeochemistry https://www2.ucar.edu/atmosnews/people/aiguo-dai https://nevada.usgs.gov/water/et/measured.htm Applications of soil moisture data SM observation techniques o Challenge: SM observations at spatial & temporal resolution relevant Measuringto applications soil (e.g.moisture gridded models, content field scale) o Point scale: high temporal resolution & low cost o Issues - spatial heterogeneity & sensor placement (e.g. -
Cosmic-Ray Studies with Experimental Apparatus at LHC
S S symmetry Article Cosmic-Ray Studies with Experimental Apparatus at LHC Emma González Hernández 1, Juan Carlos Arteaga 2, Arturo Fernández Tellez 1 and Mario Rodríguez-Cahuantzi 1,* 1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Edif. EMA3-231, Ciudad Universitaria, 72570 Puebla, Mexico; [email protected] (E.G.H.); [email protected] (A.F.T.) 2 Instituto de Física y Matemáticas, Universidad Michoacana, 58040 Morelia, Mexico; [email protected] * Correspondence: [email protected] Received: 11 September 2020; Accepted: 2 October 2020; Published: 15 October 2020 Abstract: The study of cosmic rays with underground accelerator experiments started with the LEP detectors at CERN. ALEPH, DELPHI and L3 studied some properties of atmospheric muons such as their multiplicity and momentum. In recent years, an extension and improvement of such studies has been carried out by ALICE and CMS experiments. Along with the LHC high luminosity program some experimental setups have been proposed to increase the potential discovery of LHC. An example is the MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles detector (MATHUSLA) designed for searching of Ultra Stable Neutral Particles, predicted by extensions of the Standard Model such as supersymmetric models, which is planned to be a surface detector placed 100 meters above ATLAS or CMS experiments. Hence, MATHUSLA can be suitable as a cosmic ray detector. In this manuscript the main results regarding cosmic ray studies with LHC experimental underground apparatus are summarized. The potential of future MATHUSLA proposal is also discussed. Keywords: cosmic ray physics at CERN; atmospheric muons; trigger detectors; muon bundles 1. -
Pos(ICRC2019)1148 1 GV
Evolution of geomagnetic cutoffs at the South Pole and neutron monitor rates PoS(ICRC2019)1148 Laura Rose Rosen∗ Washington State University E-mail: [email protected] Surujhdeo Seunarine University of Wisconsin-River Falls E-mail: [email protected] Neutron monitors are among the most robust and reliable detectors of GeV cosmic rays and are sensitive, with high precision, to modulations in Galactic Cosmic Rays (GCR). Hence, they can be deployed for extended periods of time, decades, and are able to observe the modulation of GCR over many solar cycles. The South Pole Neutron Monitor, located at the geographic South Pole, which is both high latitude and high altitude, has an atmospheric cutoff of around 0:1 GV. In the first four decades of its operation, a secular decline in the neutron rates have been observed. The decline may have leveled off recently. Environmental effects, including snow build up around the housing platform and the emergence and relocation of structures at the South Pole have been ruled out as causes of the decline. A recent study challenged the assumption that geomagnetic effects can be ignored at the South Pole, in particular for cosmic rays approaching from select regions in azimuth and at large zenith angles. This work confirms that ignoring geomagnetic cutoff effects could be important for the South Pole Neutron Monitor rates. We extend the investigation to include particle propagation in the Polar atmosphere, and the evolution of cosmic ray cutoffs at the South Pole over several decades. A connection is made between the evolving cutoffs and the decline in neutron monitor rates. -
Study of Intense Geomagnetic Storms and Associated Cosmic Ray
29th International Cosmic Ray Conference Pune (2005) 2, 151–154 Study of Intense Geomagnetic Storms and associated Cosmic Ray Intensity Variation ¡ ¡ Subhash C. Kaushik , A. K. Shrivastava and Hari Mohan Rajput (a) Department of Physics, Government Autonomous PG College, Datia, M P 475 661, India (b) School of Studies in Physics, Jiwaji University, Gwalior, M P 461 005, India Presenter: H. M. Rajput(subash [email protected]), ind-kaushik-SC-abs1-sh34-oral Shocks driven by energetic coronal mass ejections (CME's) and other interplanetary (IP) transients are mainly responsible for initiating large and intense geomagnetic storms. Observational results indicate that galactic cosmic rays (GCR) coming from deep surface interact with these abnormal solar and interplanetary conditions and suffer modulation effects. In this paper a systematic study has been performed to analyze the cosmic ray intensity variation during highly geoeffective conditions, referred by geomagnetic storms. These intense geomagnetic storms period have been categorized on the basis of ¢¤£¦¥ index. Study reveals the significant decrease in the cosmic ray intensity following the similar pattern as the ¢§£¨¥ index depicts. Analysis further indicates that magnitude of all the responses depend upon © component of interplanetary magnetic field (IMF) being well correlated with solar maximum and minimum periods. Transient decrease in cosmic ray intensity with slow recovery is observed during the storm phase duration. 1. Introduction Investigators have revealed that various activities taking place on Sun and other interplanetary proxies of coro- nal mass ejection's (CME's) lead to Cosmic ray (CR) modulations at neutron monitor energies. This helio- spheric modulation process reflects the dominant role played by solar wind parameters (bulk speed and the IMF intensity). -
Coulomb Explosion of Polycyclic Aromatic Hydrocarbons Induced by Heavy Cosmic Rays: Carbon Chains Production Rates
Coulomb explosion of polycyclic aromatic hydrocarbons induced by heavy cosmic rays: carbon chains production rates M Chabot1 ∗, K B´eroff2, E Dartois2, and T Pino2 1Institut de Physique Nucl´eaired'Orsay (IPNO), CNRS-IN2P3, Univ. Paris Sud, Universit´eParis-Saclay, F-91406 Orsay, France 2Institut des Sciences Mol´eculairesd'Orsay (ISMO), CNRS, Univ. Paris Sud, Universit´eParis-Saclay, F-91405 Orsay, France Synopsis The interstellar medium contains both polycyclic aromatic hydrocarbons and cosmic rays. The frontal impact of a single heavy cosmic ray strips out many electrons. The highly charged species then relax by multi-fragmentation, potentially feeding the interstellar medium with hydrocarbon chains. We model both ionization(s) and fragmentation processes and compute the fragments production rates of particular interest for astrophysical models. Low energy CRs consist of projectiles from ties of Q fold ionization's for an iron projectile proton to nickel with energy from 10 keV to GeV. at 5MeV/u on a C60 is shown in Fig.1 as an ex- Astrophysical PAHs are carbons structures with ample of such calculation. cycles containing from ten's to few hundred's of To calculate the charge state above which carbon atoms. We report on the coulomb explo- the PAH multi-fragments, we used a statistical sion of highly positively charged PAHs induced model in a microcanonical formalism based on by the interstellar low energy CRs leading to the the experimental work of S. Martin [3]. The in- formation of long carbon chains. ternal energy was compute with the IAE model. To retrieve the figure of fragmentation in the 250 multi fragmentation process of the multi-charged 1 species, we extend a statistical model construct 200 initially for small multi-charged carbon Cn(n=2 150 3 to 10)[2]. -
South Pole Neutron Monitor Forecasting of Solar Proton Radiation Intensity
SPACE WEATHER, VOL. 10, S05004, doi:10.1029/2012SW000795, 2012 South Pole neutron monitor forecasting of solar proton radiation intensity S. Y. Oh,1,2 J. W. Bieber,2 J. Clem,2 P. Evenson,2 R. Pyle,2 Y. Yi,1 and Y.-K. Kim3 Received 27 March 2012; accepted 4 April 2012; published 25 May 2012. [1] We describe a practical system for forecasting peak intensity and fluence of solar energetic protons in the tens to hundreds of MeV energy range. The system could be useful for forecasting radiation hazard, because peak intensity and fluence are closely related to the medical physics quantities peak dose rate and total dose. The method uses a pair of ground-based detectors located at the South Pole to make a measurement of the solar particle energy spectrum at relativistic (GeV) energies, and it then extrapolates this spectrum downward in energy to make a prediction of the peak intensity and fluence at lower energies. A validation study based upon 12 large solar particle events compared the prediction with measurements made aboard GOES spacecraft. This study shows that useful predictions (logarithmic correlation greater than 50%) can be made down to energies of 40–80 MeV (GOES channel P5) in the case of peak intensity, with the prediction leading the observation by 166 min on average. For higher energy GOES channels, the lead times are shorter, but the correlation coefficients are larger. Citation: Oh, S. Y., J. W. Bieber, J. Clem, P. Evenson, R. Pyle, Y. Yi, and Y.-K. Kim (2012), South Pole neutron monitor forecasting of solar proton radiation intensity, Space Weather, 10, S05004, doi:10.1029/2012SW000795. -
Six Phases of Cosmic Chemistry
Six Phases of Cosmic Chemistry Lukasz Lamza The Pontifical University of John Paul II Department of Philosophy, Chair of Philosophy of Nature Kanonicza 9, Rm. 203 31-002 Kraków, Poland e-mail: [email protected] 1. Introduction The steady development of astrophysical and cosmological sciences has led to a growing appreciation of the continuity of cosmic history throughout which all known phenomena come to being. This also includes chemical phenomena and there are numerous theoretical attempts to rewrite chemistry as a “historical” science (Haken 1978; Earley 2004). It seems therefore vital to organize the immense volume of chemical data – from astrophysical nuclear chemistry to biochemistry of living cells – in a consistent and quantitative fashion, one that would help to appreciate the unfolding of chemical phenomena throughout cosmic time. Although numerous specialist reviews exist (e.g. Shaw 2006; Herbst 2001; Hazen et al. 2008) that illustrate the growing appreciation for cosmic chemical history, several issues still need to be solved. First of all, such works discuss only a given subset of cosmic chemistry (astrochemistry, chemistry of life etc.) using the usual tools and languages of these particular disciplines which does not facilitate drawing large-scale conclusions. Second, they discuss the history of chemical structures and not chemical processes – which implicitly leaves out half of the totality chemical phenomena as non-historical. While it may now seem obvious that certain chemical structures such as aromatic hydrocarbons or pyrazines have a certain cosmic “history”, it might cause more controversy to argue that chemical processes such as catalysis or polymerization also have their “histories”. -
Forbush Decreases and Turbulence Levels at Coronal Mass Ejection Fronts
A&A 494, 1107–1118 (2009) Astronomy DOI: 10.1051/0004-6361:200809551 & c ESO 2009 Astrophysics Forbush decreases and turbulence levels at coronal mass ejection fronts P. Subramanian1,H.M.Antia2,S.R.Dugad2,U.D.Goswami2,S.K.Gupta2, Y. Hayashi3, N. Ito3,S.Kawakami3, H. Kojima4,P.K.Mohanty2,P.K.Nayak2, T. Nonaka3,A.Oshima3, K. Sivaprasad2,H.Tanaka2, and S. C. Tonwar2 (The GRAPES-3 collaboration) 1 Indian Institute of Science Education and Research, Sai Trinity Building, Pashan, Pune 411021, India 2 Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: [email protected] 3 Graduate School of Science, Osaka City University, Osaka 558-8585, Japan 4 Nagoya Women’s University, Nagoya 467-8610, Japan Received 11 February 2008 / Accepted 25 October 2008 ABSTRACT Aims. We seek to estimate the average level of MHD turbulence near coronal mass ejection (CME) fronts as they propagate from the SuntotheEarth. Methods. We examined the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together with the data from other sources for three closely observed Forbush decrease events. Each of these event is associated with frontside halo coronal mass ejections (CMEs) and near-Earth magnetic clouds. The associated Forbush decreases are therefore expected to have significant contributions from the cosmic-ray depressions inside the CMEs/ejecta. In each case, we estimate the magnitude of the Forbush decrease using a simple model for the diffusion of high-energy protons through the largely closed field lines enclosing the CME as it expands and propagates from the Sun to the Earth. -
Cosmic Ray Research Unit Department of Physics Potchefstroom University for C H E Potchefstroom 2520
hJDULATION OF COSMIC RAYS WITH PARTICULAR REFERENCE TO THE HERMANUS NEUTRON MONITOR P H STOKER DIRECTOR: COSMIC RAY RESEARCH UNIT DEPARTMENT OF PHYSICS POTCHEFSTROOM UNIVERSITY FOR C H E POTCHEFSTROOM 2520 I PREVIEW The first recordings of cosmic rays made by a n< utron monitor at the Magnecic Observatory at Hermanus, were published for July 1957, when the International Geophysical Year 1957/8 started. The operation of this 12- IGY neutron monitor was discontinued in 1964, when it was replaced by a 3NM64 as designed for the International Quiet Sun Year 1964/5. The statis= tical accuracy of the recordings was improved when in July, 1972, a 9NM64 neutron monitor was put into operation in addition to the 3NM64. The hourly data of the neutron monitor at Hermanus are published from July 1957 onwards and distributed internationally. Many papers published in international journals on the modulation of cosnic rays, have made use of the data of «-he Hermanus neutron monitor. Often requests are received from abroad for data of a shorter interval than the hourly values. The global importance of the recording of cosmic rays at Hermanus is the situation of the station at mid-latitude with a cutoff rigidity of 4,7 GV. Since most of the cosmic ray neutron monitors are situated at much lower cutoff rigidities, l>eing much closer to the geomagnetic role, the cosmic ray data of Hermanus is in high demand by investigators overseas. Our association with the Magnetic Observatory at Hermanus is not only related to the operation of the neutron monitor, but also due to our interest in the geomagnetic field as recorded in this region of the Cape Town Magnetic Anomaly known for its large secular variation.