Erosion & Sediment: ES-23
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Defining Rip-Rap
RAPPIN’ ABOUT DOT CDGRS MPAA RR 17 WARNING The following material may not be suitable for all Districts. Some of the photos used herein have come from people sitting in this room. Our intent here is NOT to offend anyone, but to promote thought and discussion. Names and locations have been withheld to protect the innocent (and the guilty). DEFINING RIP-RAP RIP-RAP: Graded distribution of large size aggregate Rip-rapped ditch DEFINING RIP-RAP The Engineer’s weapon of choice DEFINING RIP-RAP Highway maintenance manager’s idea of roadside beautification DEFINING RIP-RAP Sending interstellar communications DEFINING RIP-RAP Really Inappropriate Placement of Rock Armoring Practices DEFINING RIP-RAP GABIONS – Wire baskets filled with rip-rap RIP RAP • PROPER PLACEMENT • OVER USE • MISUSE • ALTERNATIVES DEFINING RIP-RAP RIP-RAP : A permanent erosion resistant layer made of stones intended to protect soil from erosion in areas of concentrated runoff -EPA GENERAL DESIGN PRINCIPLES •Stone must be hard, durable and angular •Stone must be resistant to weathering and to water action •Stone must be free from overburden, spoil and organic material GENERAL DESIGN PRINCIPLES • Must be well graded from the smallest to the largest size specified instead of one uniform size • The minimum weight of the stone should be 155 lbs/cu-ft RIPRAP SIZE CHART NSA No. MAX D50 MIN V Max R-2 3 in. 1.5 in. 1 in. 4.5 ft/sec R-3 6 in. 3 in. 2 in. 6.5 ft/sec R-4 12 in. 6 in. 3 in. 9.0 ft/sec R-5 18 in. -
Thesis Analysis of Riprap Design Methods Using Predictive
Thesis Analysis Of Riprap Design Methods Using Predictive Equations For Maximum And Average Velocities At The Tips Of Transverse In-Stream Structures Submitted by Thomas Richard Parker Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2014 Master’s Committee: Advisor: Christopher Thornton Steven Abt John Williams Abstract Analysis Of Riprap Design Methods Using Predictive Equations For Maximum And Average Velocities At The Tips Of Transverse In-Stream Structures Transverse in-stream structures are used to enhance navigation, improve flood control, and reduce stream bank erosion. These structures are defined as elongated obstructions having one end along the bank of a channel and the other projecting into the channel center and o↵er protection of erodible banks by deflecting flow from the bank to the channel center. Redirection of the flow moves erosive forces away from the bank, which enhances bank stability. The design, e↵ectiveness, and performance of transverse in-stream structures have not been well documented, but recent e↵orts have begun to study the flow fields and profiles around and over transverse in-stream structures. It is essential for channel flow characteristics to be quantified and correlated to geometric structure parameters in order for proposed in-stream structure designs to perform e↵ectively. Areas adjacent to the tips of in-stream transverse structures are particularly susceptible to strong approach flows, and an increase in shear stress can cause instability in the in-stream structure. As a result, the tips of the structures are a major focus in design and must be protected. -
Rock Riprap Design for Protection of Stream Channels Near Highway Structures; Volume 1 Hydraulic Characteristics of Open Channels: U.S
ROCK RIPRAP DESIGN FOR PROTECTION OF STREAM CHANNELS NEAR HIGHWAY STRUCTURES VOLUME 2 ~ EVALUATION OF RIPRAP DESIGN PROCEDURES By J.C. Blodgett and C.E. McConaughy U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 86-4128 Prepared in cooperation with FEDERAL HIGHWAY ADMINISTRATION CNo I <r m o oo Sacramento, California 1986 UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information, Copies of this report can be write to: purchased from: District Chief Open-File Services Section U.S. Geological Survey Western Distribution Branch Federal Building, Room W-2234 U.S. Geological Survey 2800 Cottage Way Box 25425, Federal Center Sacramento, CA 95825 Denver, CO 80225 Telephone: (303) 236-7476 CONTENTS Page Abstract -- - - --- --- - -- -- -- - _______ _ ]_ Introduction - -- --- -- - - - -- - - - -- -- - 2 Review of riprap design technology - -- -- - - - -- ---- -- - 4 Shear stress related to permissible flow velocity -- - --- - 5 Shear stress related to hydraulic radius and gradient ----------- -- 7 Characteristics of riprap failure - --- - - ---- _____ -- 9 Classification of failures ----- - - _____ - - - 10 Particle erosion --- __________________________________________ 10 Translational slide - ---- -- - - ______ - ___ 15 Modified slump -- - ----- __-- ___ ___ ____ __ ____ \& Slump ---------------------------------------------------------- 18 Hydraulics associated with riprap failures of selected streams -- 19 Pinole Creek at Pinole, California ----___ -
Division 2 Earthwork
Division 2 Earthwork 2-01 Clearing, Grubbing, and Roadside Cleanup 2-01.1 Description The Contractor shall clear, grub, and clean up those areas staked or described in the Special Provisions. This Work includes protecting from harm all trees, bushes, shrubs, or other objects selected to remain. “Clearing” means removing and disposing of all unwanted material from the surface, such as trees, brush, down timber, or other natural material. “Grubbing” means removing and disposing of all unwanted vegetative matter from underground, such as sod, stumps, roots, buried logs, or other debris. “Roadside cleanup”, whether inside or outside the staked area, means Work done to give the roadside an attractive, finished appearance. “Debris” means all unusable natural material produced by clearing, grubbing, or roadside cleanup. 2-01.2 Disposal of Usable Material and Debris The Contractor shall meet all requirements of state, county, and municipal regulations regarding health, safety, and public welfare in the disposal of all usable material and debris. The Contractor shall dispose of all debris by one or more of the disposal methods described below. 2-01.2(1) Disposal Method No. 1 – Open Burning The open burning of residue resulting from land clearing is restricted by Chapter 173-425 of the Washington Administrative Code (WAC). No commercial open burning shall be conducted without authorization from the Washington State Department of Ecology or the appropriate local air pollution control authority. All burning operations shall be strictly in accordance with these authorizations. 2-01.2(2) Disposal Method No. 2 – Waste Site Debris shall be hauled to a waste site obtained and provided by the Contractor in accordance with Section 2-03.3(7)C. -
Green Terramesh Rock Fall Protection Bund
Double Twist Mesh Project: 112 Bridle Path Road Date: May 2016 Client: Private Residence, Heathcote Valley Designer: Engeo Consulting Ltd Contractor: Higgins Contractors Location: Christchurch Green Terramesh Rock Fall Protection Bund The 22 February 2010 Christchurch earthquake triggered numerous rock falls causing damage to homes built close to cliffs. Many of those that survived were red zoned by the Government due of the risk of further rock fall or cliff collapse. The area around Heathcote Valley and in particular Bridle Path road was identified as an area of high risk requiring some form of rock fall protection structure to be constructed in order to protect dwellings from rock fall in the event of any further earthquakes. Geofabrics offers a range of solutions that includes certified catch fences and Green Terramesh rockfall embankments. A rockfall embankment was the preferred solution for this site which has the potential to experience multiple rock fall events. The use of Green Site Preparation Terramesh allows the embankment slopes to be steepened and the footprint reduced to form a stable and robust bund having high energy absorption characteristics. The structure is typically filled with compacted granular material or engineered soil fill with horizontal soil reinforcement (geogrid or DT mesh) inclusions. The front face can either be vegetated or finished with a rock veneer. Rockfall embankments have undergone extensive full scale testing in Europe. Actual rock impacts in excess of 5000kJ into Green Terramesh rockfall embankments located in Northern Italy have been back-analysed and the design methodology verified using numerical modelling (FEM) techniques. This research has resulted in the development of design charts to provide designers with a Bund Design simplified design method based on rock penetration depth. -
Slope Stability 101 Basic Concepts and NOT for Final Design Purposes! Slope Stability Analysis Basics
Slope Stability 101 Basic Concepts and NOT for Final Design Purposes! Slope Stability Analysis Basics Shear Strength of Soils Ability of soil to resist sliding on itself on the slope Angle of Repose definition n1. the maximum angle to the horizontal at which rocks, soil, etc, will remain without sliding Shear Strength Parameters and Soils Info Φ angle of internal friction C cohesion (clays are cohesive and sands are non-cohesive) Θ slope angle γ unit weight of soil Internal Angles of Friction Estimates for our use in example Silty sand Φ = 25 degrees Loose sand Φ = 30 degrees Medium to Dense sand Φ = 35 degrees Rock Riprap Φ = 40 degrees Slope Stability Analysis Basics Explore Site Geology Characterize soil shear strength Construct slope stability model Establish seepage and groundwater conditions Select loading condition Locate critical failure surface Iterate until minimum Factor of Safety (FS) is achieved Rules of Thumb and “Easy” Method of Estimating Slope Stability Geology and Soils Information Needed (from site or soils database) Check appropriate loading conditions (seeps, rapid drawdown, fluctuating water levels, flows) Select values to input for Φ and C Locate water table in slope (critical for evaluation!) 2:1 slopes are typically stable for less than 15 foot heights Note whether or not existing slopes are vegetated and stable Plan for a factor of safety (hazards evaluation) FS between 1.4 and 1.5 is typically adequate for our purposes No Flow Slope Stability Analysis FS = tan Φ / tan Θ Where Φ is the effective -
Section 31 22 13 ‐ Site Grading
University of Houston Master Construction Specifications Insert Project Name SECTION 31 22 13 ‐ SITE GRADING PART 1 ‐ GENERAL 1.1 SCOPE OF WORK A. This Section pertains to the earthwork generally consisting of excavation, filling, backfilling and subgrade preparation as required for construction of site retaining walls/structures, slab on grade walks, pavement surfaces, landscaped areas and the general shaping of the site as shown, described or reasonably inferred on the drawings. B. Subsurface data is available from the *Owner. Contractor is urged to carefully analyze the site conditions. C. This section excludes work necessary for building pad preparations. Work within the building footprint and surrounding 5 feet shall be accomplished under technical specification 31 23 00 Excavation and Fill prepared by *STRUCTURAL ENGINEER]. D. Construction Means, Methods, Techniques, Sequences and Procedures: 1. The Contractor is solely responsible for, and has sole control over, construction means, methods, techniques, sequences and procedures, and for coordinating all portions of the Work. 2. Shoring that is required to complete the Work, is considered a method or technique and is the sole responsibility of the Contractor. If a regulatory agency requires a licensed engineer to design, approve or provide drawings for shoring, then it is the sole responsibility of the Contractor to engage the services of a qualified Engineer for shoring design services. 1.2 RELATED WORK SPECIFIED ELSEWHERE A. Drawings and general provisions of the Contract, including A‐procurement and Contracting Requirements, Division 00 and Division 01 apply to this section. B. Section 31 11 00 Clearing and Grubbing C. Section 31 23 33 Trenching, Backfilling and Compaction D. -
Design of Riprap Revetment HEC 11 Metric Version
Design of Riprap Revetment HEC 11 Metric Version Welcome to HEC 11-Design of Riprap Revetment. Table of Contents Preface Tech Doc U.S. - SI Conversions DISCLAIMER: During the editing of this manual for conversion to an electronic format, the intent has been to convert the publication to the metric system while keeping the document as close to the original as possible. The document has undergone editorial update during the conversion process. Archived Table of Contents for HEC 11-Design of Riprap Revetment (Metric) List of Figures List of Tables List of Charts & Forms List of Equations Cover Page : HEC 11-Design of Riprap Revetment (Metric) Chapter 1 : HEC 11 Introduction 1.1 Scope 1.2 Recognition of Erosion Potential 1.3 Erosion Mechanisms and Riprap Failure Modes Chapter 2 : HEC 11 Revetment Types 2.1 Riprap 2.1.1 Rock Riprap 2.1.2 Rubble Riprap 2.2 Wire-Enclosed Rock 2.3 Pre-Cast Concrete Block 2.4 Grouted Rock 2.5 Paved Lining Chapter 3 : HEC 11 Design Concepts 3.1 Design Discharge 3.2 Flow Types 3.3 Section Geometry 3.4 Flow in Channel Bends 3.5 Flow Resistance 3.6 Extent of Protection 3.6.1 Longitudinal Extent 3.6.2 Vertical Extent 3.6.2.1 Design Height 3.6.2.2 Toe Depth Chapter 4 : HEC 11 Design Guidelines for Rock Riprap 4.1 Rock Size Archived 4.1.1 Particle Erosion 4.1.1.1 Design Relationship 4.1.1.2 Application 4.1.2 Wave Erosion 4.1.3 Ice Damage 4.2 Rock Gradation 4.3 Layer Thickness 4.4 Filter Design 4.4.1 Granular Filters 4.4.2 Fabric Filters 4.5 Material Quality 4.6 Edge Treatment 4.7 Construction Chapter 5 : HEC 11 Rock -
Stable Riprap Size for Open Channel Flows
TECHNICAL REPORT HL-88-4 STABLE RIPRAP SIZE FOR OPEN CHANNEL FLOWS by Stephen T. Maynord Hydraulics Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631 March 1988 Final Report Approved For Public Release; Distribution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 Under CWI Work Unit No. 31028 JAN ? 31989 BUREAUL OF REC^M^nON pcN V/FR , COLOBAS S ^ . when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. BUREAU OF RECLAMATION DENVER LIBRARY < & A 92001560 & ^EDDlStiD SECURITY CLASS I FI CAT IQ N^q T THIS PAGE Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-018B 1a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) Technical Report HL-88-4 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION USAEWES (If applicable) Hydraulics Laboratory_______ WESHS-S 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) PO Box 631 Vicksburg, MS 39180-0631 8a. -
Section 225: Slope and Erosion Protection Structures
City of Rio Rancho Standard Specifications SECTION 225: SLOPE AND EROSION PROTECTION STRUCTURES 225.1 DESCRIPTION This work consists of providing and placing riprap, gabions, revetment mattresses, sacked concrete revetment, concrete block revetment, wrapped rock faces, and other systems on embankment slopes, the sides and bottoms of channels, drainage outlets, ditches, and other such locations. 225.2 MATERIALS Unless otherwise specified in the Contract, the Contractor shall provide slope and erosion protection structures as follows: 1. Hexagonal double-twisted wire mesh riprap, gabions, and revetment mattresses; or, 2. Welded wire mesh gabions, revetment mattresses, and wrapped rock faces. The Contractor shall provide galvanized slope protection items in accordance with ASTM A 641. If specified in the Contract, the Contractor shall coat galvanized items with PVC in accordance with Section 225.2.2.2.9, “PVC Coating.” The Contractor shall provide double-twisted riprap, gabions, and revetment mattresses in accordance with ASTM A 975. The Contractor shall provide welded wire mesh gabions, revetment mattresses, and wrapped rock faces in accordance with ASTM A 974. 225.2.1 Classifications Riprap and gabions shall be classified in accordance with Table 225.2.1:1, “Riprap Classifications and Gabion Requirements.” The Contractor shall provide riprap with at least 80% of the stones meeting the specified size requirements. The Contractor shall use stones less than the minimum dimensions to fill voids. For riprap Class A, wrapped rock faces and gabions, the Contractor shall not use stones smaller than the mesh openings. The size of the stone shall be as stated in the plans. Class D, Derrick Stone shall follow the gradation requirements in Table 225.2.1:2, “Gradation Requirements for Class D, Derrick Stone.” 225.2.2 Riprap, Gabions, Revetment Mattresses, and Rock Faces 225.2.2.1 Stone for Riprap, Gabions, Revetment Mattresses, and Rock Faces All stone provided and installed shall be angular rock with fractured faces, not rounded. -
Maine Erosion and Sediment Control Practices Field Guide for Contractors
Maine Erosion and Sediment Control Practices Field Guide for Contractors Maine Department of Environmental Protection ACKNOWLEDGEMENTS Production 2014 Revision: Marianne Hubert, Senior Environmental Engineer, Division of Watershed Management, Bureau of Land and Water Quality, Department of Environmental Protection (DEP). Illustrations: Photos obtained from SJR Engineering Inc., Shaw Brothers Construction Inc., Bar Mills Ecological, Maine Department of Transportation (MaineDOT), Maine Land Use Planning Commission (LUPC) and Maine Department of Environmental Protection (DEP). TECHNICAL REVIEW COMMITTEE: The following people participated in the revision of this manual: Steve Roberge, SJR Engineering, Inc., Augusta Ross Cudlitz, Engineering Assistance & Design, Inc., Yarmouth Susan Shaller, Bar Mills Ecological, Buxton David Roque, Department of Agriculture, Conservation & Forestry Peter Newkirk, MaineDOT Bob Berry, Main-Land Development Consultants Daniel Shaw, Shaw Brothers Construction Peter Hanrahan, E.J. Prescott William Noble, William Laflamme, David Waddell, Kenneth Libbey, Ben Viola, Jared Woolston, and Marianne Hubert of the Maine DEP Revision (2003): The manual was revised and reorganized with illustrations (original manual, Salix, Applied Earthcare and Ross Cudlitz, Engineering Assistance & Design, Inc.). Original Manual (1991): The original document was funded from a US Environmental Protection Agency Federal Clean Water Act grant to the Maine Department of Environmental Protection, Non- Point Source Pollution Program and developed -
Design of Riprap Revetment
, 1-) r-) P .A) C? F Hydraulic Engineering Circular No. 11 U.S. Department of Transportation Federal Highway Publication Na FHWA-lP-89-016 Administration March 1989 Design of Riprap Revetment Research, Development, and-T"echnology Turner-Fairbank Highwayffesewch Center 6300 Gec rg3#own Pike McLean, V'wffiniae=-2296 WATER RESOURCES ' RESEARCH LABORATORY J OFFICIAL FILE COPY Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-IP-89-016 HEC-11 4, Title and Subtitle S. Report Dote March 1989 DESIGN OF RIPRAP REVETMENT 6. Performing Organization Code 8. Performing Organization Report No. 7, Aurhorrs) Scott A. Brown, Eric S. Clyde 9, Performing Organization Name and Address 10. Work Unit No. (TRAIS) Sutron Corporation 3D9C0033 2190 Fox Mill Road 11. Contract or Grant No. Herndon, VA 22071 DTFH61-85-C-00123 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Office of Implementation, HRT-10 Final Report Federal Highway Administration Mar. 1986 - Sept. 1988 6200 Georgetown Pike McLean, VA 22101 14. Sponsoring Agency Code 15. Supplementary Notes Project Manager: Thomas Krylowski Technical Assistants: Philip L. Thompson, Dennis L. Richards, J. Sterling Jones 16. Abstract This revised version of Hydraulic Engineering Circular No. 11 (HEC-11), represents major revisions to the earlier (1967) edition of HEC-11. Recent research findings and revised design procedures have been incorporated. The manual has been expanded into a comprehensive design publication. The revised manual includes discussions on recognizing erosion potential, erosion mechanisms and riprap failure modes, riprap types including rock riprap, rubble riprap, gabions, preformed blocks, grouted rock, and paved linings.