Free Download on How to Build a 3D Printer 3D Printers DIY Plans and Build Instructions

Total Page:16

File Type:pdf, Size:1020Kb

Free Download on How to Build a 3D Printer 3D Printers DIY Plans and Build Instructions free download on how to build a 3d printer 3D printers DIY plans and build instructions. There are many DIY projects today that can be used to make 3D printers at home, and some of them can be found here. These are mostly printers based on the RepRap 3D printer, and you can choose to either make one on your own or buy a kit and assemble the parts. What matters is that you can become the owner of a 3D printer by spending just a small amount of money; we have even come across an extruder plan to help you make the filament out of recycled plastic! - Darwin 3D printer. RepRap 1.0 "Darwin" is a rapid prototyping machine that is capable of making the majority of its own component parts. Instructions and all necessary data are available completely free under the GNU General Public Licence from this website to everyone. As RepRap 1.0 "Darwin" copy itself, once you have one you can make others for your friends; or if they have one you can ask them to make one for you. Of course, you can also make as many as you want for yourself; the more you have, the faster you will be able to make other items. RepRap etiquette asks that you use your machine to make the parts for at least two more Darwins for other people at cost, as well as using it to make whatever you or anyone else on the internet can think up. Darwin consists of a frame made from rods and printed parts. A flat build platform moves vertically in that frame, driven on screw threads by a stepper motor. At the top of the frame there are two write heads that move horizontally (driven by toothed belts and two more steppers) extruding a thin stream of molten plastic to form new layers on the build base. The machine prints layer by layer to form a solid object. The build base then moves one increment down, the second layer is extruded, and so on. There are two heads to allow a filler material to be laid down as well as the plastic. This filler is used to support overhanging parts of the objects being built, and is removed when the process is finished. - Fisher 3D printer. The RepRap Fisher is an open-source fused deposition modeling 3D printer and is part of the RepRap project. The RepRap Fisher is named after the English statistician and biologist Ronald Fisher, it was designed by RepRapPro. The RepRap Fisher has a 150mm diameter by 180mm height build volume, uses a bowden extruder and has a print resolution of 12.5um in all directions, it also has a micro SD card and USB and Ethernet connections allowing it to be connected to a network. The printer was praised for its ease of construction and low price and is only available in kit form. - Huxley 3D printer. RepRap Version III "Huxley" is being developed on this and associated pages. It is based on Ed's original Mini-Mendel design, together with a lot of work already put in by ErikDeBruijn and others. Huxley is named, like all RepRaps, after a biologist: Thomas Henry Huxley. To clarify, Huxley will be Mini-Mendel with some re-designed parts plus more documentation, defined integrated electronics (with alternatives, of course), and a selection of alternative firmware and host software configured to drive it. We will be integrating as much as possible of the work such as Brutis already done on Mini-Mendel. The machine uses M6 threaded rods and M3 nuts and bolts (as opposed to the M8/M4 used on Mendel) and NEMA 14 Stepper Motors. The reprapped parts are about 30% of the volume of those for Mendel, which is to say it could reproduce three times faster. Mendel can print itself, and so will Huxley. In addition, Mendel will be able to print Huxley, and Huxley will be able to print Mendel. We will continue Mendel development to turn it into a multi-material machine. Huxley will be a one-material machine, though we will probably also add a Pen Plotter so we can write etch-resist on PCBs and use an Oil Pen to facilitate separation of Support Material for overhangs. The idea is to develop both Mendel and Huxley in parallel, with Huxley being as cut-down and minimal as possible, and Mendel being the machine with all the fancy capabilities. Huxley will be the fastest replicator. Mendel will be the most versatile. - Mendel 3D printer. The machine on the right is the RepRap printer, which we call "Mendel" after the father of genetics. It's the second, improved version of RepRap: small enough to fit on your desk, but with a print volume large enough for you to make big things. The machine is made up of bits bought in from local suppliers or online, and parts which it can make for itself - all the translucent structural components you can see. In the picture, behind the machine, you can see the RepRap software which you can use to print your thing. We give this, and the designs for the machine away, free - it's all open source (GPL 2). Though you do have to buy in some standard components from. well, whoever you want. which cost about €400. The idea of getting all the materials and building a machine yourself may seem daunting, but this area of the wiki is dedicated to making the whole process as easy as possible. There are a number of instructional videos distributed through the Mendel documentation. These are also all gathered together in one place here. - Morgan 3D printer. The RepRap Morgan is an open-source fused deposition modeling 3D printer. The Morgan is part of the RepRap project and has an unusual SCARA arm design. The first Morgan printer was designed by Quentin Harley, a South African engineer (working for Siemens at the time) at the House4Hack Makerspace in Centurion. The SCARA arm design was developed due to the lack of access to components of existing 3D printer designs in South Africa and their relatively high cost. The Morgan name comes from the RepRap convention of naming printers after famous deceased biologists. The Morgan printers was named after Thomas Hunt Morgan. Their names were used in the development codenames for the first two generations of Morgan 3D Printers. Morgan printers are now manufactured full-time by the inventor in a small workshop factory in the House4Hack makerspace. - Ormerod 3D printer. The RepRapPro Ormerod design is from RepRapPro. The machine is a fast to assemble, networked 3D printer with non-contact bed probe for full geometric compensation. Its primary design goal is to offer a printer which is easy to expand in functionality, fast to replicate, and fast to assemble and to commission. This new model builds on the already established designs and technical advances which have undergone brisk development and heavy testing since the RepRap Project‘s inception in 2004. The RepRapPro Ormerod is a monochrome 3D printer configured to work with one type of plastic at a time. However, RepRapPro Ormerod is fundamentally designed to work with three deposition heads and an upgrade kit will be available soon for this machine to allow it to print multiple materials and colours. - Prusa Mendel. Prusa Mendel is the Ford Model T of 3D printers. Like the Model T, the Prusa Mendel improves on a previous design by being more streamlined for manufacture. The Prusa Mendel is a simpler remix of the original Mendel. By default, it uses printed bushings instead of regular bearings, though options to substitute inexpensive lm8uu linear bearings or other types of bearings or bushings are available. The current version uses three 608 bearings in total, one for the X axis and two for the Y axis. The 624 bearings are gone altogether. Prusa's main goal is to be the purest and simplest 3D printer you can build. It's much simpler to build it. It's much simpler to modify it. It's much simpler to print it for your friends. It's much simpler to repair it. - Recyclebotrep - 3D printing filament extruder. In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D printer. The device costs less than $700 in materials and can be fabricated in about 24 h. Filament is produced at 0.4 kg/h using 0.24 kWh/kg with a diameter ±4.6%. Thus, filament can be manufactured from commercial pellets for <22% of commercial filament costs. In addition, it can fabricate recycled waste plastic into filament for 2.5 cents/kg, which is <1000X commercial filament costs. The system can fabricate filament from polymers with extrusion temperatures <250 °C and is thus capable of manufacturing custom filament over a wide range of thermopolymers and composites for material science studies of new materials and recyclability studies, as well as research on novel applications of fused filament based 3-D printing. - Snappy 3 3D printer.
Recommended publications
  • 1 Open Source 3-D Filament Diameter Sensor for Recycling, Winding and Additive Manufacturing Machines Aliaksei L. Petsiuk1 and J
    Open Source 3-D Filament Diameter Sensor for Recycling, Winding and Additive Manufacturing Machines Aliaksei L. Petsiuk1 and Joshua M. Pearce1,2,3 1Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA 2Department of Material Science & Engineering, Michigan Technological University, Houghton, MI 49931, USA 3Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, FI-00076, Finland [email protected], [email protected] Graphical Abstract Filament images Extracted pseudo- surface Highlights • Developed a portable optical computer vision-based diameter measurement system. • The module can be integrated into a control system of a plastic waste recycling machine. • Multi-axis measurements with ovality detection and texture analysis assure quality. • Measurement logging allows tracking the quality of the filament along its length. 1 Abstract To overcome the challenge of upcycling plastic waste into 3-D printing filament in the distributed recycling and additive manufacturing systems, this study designs, builds, tests and validates an open source 3-D filament diameter sensor for recycling and winding machines. The modular system for multi-axis optical control of the diameter of the recycled 3-D-printer filament makes it possible to analyze the surface structure of the processed filament, save the history of measurements along the entire length of the spool, as well as mark defective areas. The sensor is developed as an independent module and integrated into a recyclebot. The diameter sensor was tested on different kinds of polymers (ABS, PLA) different sources of plastic (recycled 3-D prints and virgin plastic waste) and different colors including clear plastic. The results of the diameter measurements using the camera were compared with the manual measurements, and the measurements obtained with a one-dimensional digital light caliper.
    [Show full text]
  • Distributed Plastic Recycling with an Open Source Recyclebot
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2017 TIGHTENING THE LOOP ON THE CIRCULAR ECONOMY: DISTRIBUTED PLASTIC RECYCLING WITH AN OPEN SOURCE RECYCLEBOT Shan Zhong Michigan Technological University, [email protected] Copyright 2017 Shan Zhong Recommended Citation Zhong, Shan, "TIGHTENING THE LOOP ON THE CIRCULAR ECONOMY: DISTRIBUTED PLASTIC RECYCLING WITH AN OPEN SOURCE RECYCLEBOT", Open Access Master's Thesis, Michigan Technological University, 2017. https://doi.org/10.37099/mtu.dc.etdr/397 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Other Materials Science and Engineering Commons, and the Polymer and Organic Materials Commons TIGHTENING THE LOOP ON THE CIRCULAR ECONOMY: DISTRIBUTED PLASTIC RECYCLING WITH AN OPEN SOURCE RECYCLEBOT By Shan Zhong A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Materials Science and Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2017 © 2017 Shan Zhong This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Materials Science and Engineering. Department of Materials Science and Engineering Thesis Advisor: Dr. Joshua A. Pearce Committee Member: Dr. Stephen L. Kampe Committee Member: Dr. Yun Hang Hu Department Chair: Dr. Stephen L. Kampe Table of Contents List of Figures ..................................................................................................................... v
    [Show full text]
  • Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System Shan Zhong, Pratiksha Rakhe, Joshua Pearce
    Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System Shan Zhong, Pratiksha Rakhe, Joshua Pearce To cite this version: Shan Zhong, Pratiksha Rakhe, Joshua Pearce. Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System. Recycling, MDPI, 2017, 2 (2), pp.10. 10.3390/recycling2020010. hal-02113450 HAL Id: hal-02113450 https://hal.archives-ouvertes.fr/hal-02113450 Submitted on 28 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License recycling Article Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System Shan Zhong 1, Pratiksha Rakhe 1 and Joshua M. Pearce 1,2,* 1 Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI 49931, USA; [email protected] (S.Z.); [email protected] (P.R.) 2 Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA * Correspondence: [email protected]; Tel.: +1-906-487-1466 Academic Editor: Michele Rosano Received: 25 April 2017; Accepted: 8 June 2017; Published: 15 June 2017 Abstract: The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic.
    [Show full text]
  • Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability
    technologies Article Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability Aubrey L. Woern 1 and Joshua M. Pearce 2,3,4,* ID 1 Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA; [email protected] 2 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, FI-02150 Espoo, Finland 3 Department of Material Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA 4 Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA * Correspondence: [email protected]; Tel.: +1-906-487-1466 Received: 11 October 2017; Accepted: 26 October 2017; Published: 30 October 2017 Abstract: Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical energy use and filament consumption by mass to determine the cost to fabricate with a commercial RepRap 3-D printer. Printed parts were inspected and when necessary tested for their targeted application to ensure technical feasibility. Then, the experimentally measured cost to DIY manufacturers was compared to low and high market prices for comparable commercially available products.
    [Show full text]
  • 3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing
    inventions Article 3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing Aubrey L. Woern 1 and Joshua M. Pearce 2,3,* 1 Department of Mechanical Engineering–Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA; [email protected] 2 Department of Material Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA 3 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, FI-00076 Espoo, Finland * Correspondence: [email protected] or joshua.pearce@aalto.fi; Tel.: +1-906-487-1466 Received: 2 November 2018; Accepted: 21 November 2018; Published: 27 November 2018 Abstract: Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process.
    [Show full text]
  • Coupled Distributed Recycling and Manufacturing with Recyclebot and Reprap 3-D Printing Shan Zhong, Joshua Pearce
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Tightening the loop on the circular economy: Coupled distributed recycling and manufacturing with recyclebot and RepRap 3-D printing Shan Zhong, Joshua Pearce To cite this version: Shan Zhong, Joshua Pearce. Tightening the loop on the circular economy: Coupled distributed recycling and manufacturing with recyclebot and RepRap 3-D printing. Resources, Conservation and Recycling, Elsevier, 2018, 128, pp.48-58. 10.1016/j.resconrec.2017.09.023. hal-02111399 HAL Id: hal-02111399 https://hal.archives-ouvertes.fr/hal-02111399 Submitted on 26 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preprint: Shan Zhong & Joshua M. Pearce. Tightening the loop on the circular economy: Coupled distributed recycling and manufacturing with recyclebot and RepRap 3-D printing,Resources, Conservation and Recycling 128, (2018), pp. 48–58. doi: 10.1016/j.resconrec.2017.09.023 Tightening the Loop on the Circular Economy: Coupled Distributed Recycling and Manufacturing with Recyclebot and RepRap 3-D Printing Shan Zhonga and Joshua M.
    [Show full text]
  • 3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing Aubrey Woern, Joshua Pearce
    3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing Aubrey Woern, Joshua Pearce To cite this version: Aubrey Woern, Joshua Pearce. 3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing. Inventions, MDPI, 2018, 3 (4), pp.78. 10.3390/inven- tions3040078. hal-02111353 HAL Id: hal-02111353 https://hal.archives-ouvertes.fr/hal-02111353 Submitted on 26 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. inventions Article 3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing Aubrey L. Woern 1 and Joshua M. Pearce 2,3,* 1 Department of Mechanical Engineering–Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA; [email protected] 2 Department of Material Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA 3 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, FI-00076 Espoo, Finland * Correspondence: [email protected] or joshua.pearce@aalto.fi; Tel.: +1-906-487-1466 Received: 2 November 2018; Accepted: 21 November 2018; Published: 27 November 2018 Abstract: Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment.
    [Show full text]
  • Distributed Recycling Waste Polymer Into Reprap Feedstock Christopher Baechler Queen's University - Kingston, Ontario
    Michigan Technological University Digital Commons @ Michigan Tech Department of Materials Science and Engineering Department of Materials Science and Engineering Publications 1-2012 Distributed Recycling Waste Polymer into RepRap Feedstock Christopher Baechler Queen's University - Kingston, Ontario Matthew eD Vuono Queen's University - Kingston, Ontario Joshua M. Pearce Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/materials_fp Recommended Citation Christian Baechler, Matthew DeVuono, Joshua M. Pearce, (2013) "Distributed recycling of waste polymer into RepRap feedstock", Rapid Prototyping Journal, Vol. 19 Iss: 2, pp.118 - 125. http://digitalcommons.mtu.edu/materials_fp/29/ Follow this and additional works at: https://digitalcommons.mtu.edu/materials_fp Christian Baechler, Matthew DeVuono, and Joshua M. Pearce, “Distributed Recycling of Waste Polymer into RepRap Feedstock” Rapid Prototyping Journal, 19(2), pp. 118-125 (2013). DOI: http://dx.doi.org/10.1108/13552541311302978 Distributed Recycling of Waste Polymer into RepRap Feedstock Christian Baechler (1), Matthew DeVuono (1), and Joshua M. Pearce (2) 1. Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada 2. Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA Abstract: Purpose: A low-cost, open source, self-replicating rapid prototyper (RepRap) has been developed, which greatly expands the potential user base of rapid prototypers. The operating cost of the RepRap can be further reduced using waste polymers as feedstock. Centralized recycling of polymers is often uneconomic and energy intensive due to transportation embodied energy. This paper provides a proof of concept for high-value recycling of waste polymers at distributed creation sites.
    [Show full text]
  • Distributed Recycling of Waste Polymer Into Reprap Feedstock Christian Baechler, Matthew Devuono, Joshua Pearce
    Distributed recycling of waste polymer into RepRap feedstock Christian Baechler, Matthew Devuono, Joshua Pearce To cite this version: Christian Baechler, Matthew Devuono, Joshua Pearce. Distributed recycling of waste poly- mer into RepRap feedstock. Rapid Prototyping Journal, Emerald, 2013, 19 (2), pp.118-125. 10.1108/13552541311302978. hal-02120447 HAL Id: hal-02120447 https://hal.archives-ouvertes.fr/hal-02120447 Submitted on 5 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christian Baechler, Matthew DeVuono, and Joshua M. Pearce, “Distributed Recycling of Waste Polymer into RepRap Feedstock” Rapid Prototyping Journal, 19(2), pp. 118-125 (2013). DOI: http://dx.doi.org/10.1108/13552541311302978 Distributed Recycling of Waste Polymer into RepRap Feedstock Christian Baechler (1), Matthew DeVuono (1), and Joshua M. Pearce (2) 1. Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada 2. Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA Abstract: Purpose: A low-cost, open source, self-replicating rapid prototyper (RepRap) has been developed, which greatly expands the potential user base of rapid prototypers. The operating cost of the RepRap can be further reduced using waste polymers as feedstock.
    [Show full text]
  • Polymer Recycling and Additive Manufacturing in an Open Source Context: Optimization of Processes and Methods
    Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods Fabio Cruz∗1, Silvia Lanza1, Hakim Boudaoud1, Sandrine Hoppe2, and Mauricio Camargo1 1Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, Nancy, France 2Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine , Nancy, France Abstract Polymer recycling is a way to reduce environmental impacts of accumulation of polymeric waste materials. However, low recycling rates are often observed in conventional centralized recycling plants mainly to the challenge of collection and transportation for high-volume low-weight-polymers in conventional centralized recycling plants. As the democratization of open-source 3D printers is going forward thanks to initiatives such as FabLab environments, there is a growing interest on how to use this technology to improve the efficiency of use of raw materials. Studies have been proposed in order to recycle waste polymer into open-source 3D printer feedstock. The recycling of high-density polyethylene (HDPE) issued from bottles of used milk jugs through use of an open-source filament fabricator system called RecycleBot has been evaluated. In this study, we propose an evaluation of the mechanical recyclability of Polylactic Acid (PLA), material widely used in the open-source 3D printing context, in order to establish the viability of this recycled material to be used in the open-source 3D printers. The degradation of the material’s mechanical and rheological properties after a number of cycles of multiple extrusion and printing processes is evaluated. The characterization of recycled raw materials for open-source 3D printing has implications not only to reduce the environmental impact of polymers waste, but also it will allow us to understand the technical requirements and challenges for development of open-source filament recycle machine/process.
    [Show full text]
  • Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market Emily Petersen, Romain Kidd, Joshua Pearce
    Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market Emily Petersen, Romain Kidd, Joshua Pearce To cite this version: Emily Petersen, Romain Kidd, Joshua Pearce. Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market. Technologies , MDPI, 2017, 5 (3), pp.45. 10.3390/technologies5030045. hal-02111411 HAL Id: hal-02111411 https://hal.archives-ouvertes.fr/hal-02111411 Submitted on 26 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License technologies Article Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market Emily E. Petersen 1, Romain W. Kidd 2 and Joshua M. Pearce 1,3,* ID 1 Department of Material Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA; [email protected] 2 MyMiniFactory, London E1 2JA, UK; [email protected] 3 Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA * Correspondence: [email protected]; Tel.: +1-906-487-1466 Received: 16 May 2017; Accepted: 6 July 2017; Published: 20 July 2017 Abstract: The 2020 toy and game market is projected to be US$135 billion.
    [Show full text]
  • Technologies
    technologies Article Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability Aubrey L. Woern 1 and Joshua M. Pearce 2,3,4,* ID 1 Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA; [email protected] 2 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, FI-02150 Espoo, Finland 3 Department of Material Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA 4 Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA * Correspondence: [email protected]; Tel.: +1-906-487-1466 Received: 11 October 2017; Accepted: 26 October 2017; Published: 30 October 2017 Abstract: Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical energy use and filament consumption by mass to determine the cost to fabricate with a commercial RepRap 3-D printer. Printed parts were inspected and when necessary tested for their targeted application to ensure technical feasibility. Then, the experimentally measured cost to DIY manufacturers was compared to low and high market prices for comparable commercially available products.
    [Show full text]