'Persian' Lime Selections Grafted Onto Swingle Citrumelo

Total Page:16

File Type:pdf, Size:1020Kb

'Persian' Lime Selections Grafted Onto Swingle Citrumelo 109 Scientia Agricola http://dx.doi.org/10.1590/0103-9016-2015-0058 Initial horticultural performance of nine ‘Persian’ lime selections grafted onto Swingle citrumelo Magno Guimarães Santos*, Walter dos Santos Soares Filho, Eduardo Augusto Girardi, Abelmon da Silva Gesteira, Orlando Sampaio Passos, Claudia Fortes Ferreira Embrapa Cassava and Fruits, R. Embrapa, s/n − 44380-000 ABSTRACT: ‘Persian’ lime (PL) [Citrus latifolia (Yu. Tanaka) Tanaka] is an important species both − Cruz das Almas, BA − Brazil. for domestic fresh fruit consumption in Brazil as well as the export market, since the country *Corresponding author <[email protected]> is one of the largest producers in the world despite the fact that, in commercial plantations, it is still not uncommon to find trees with low productivity and high plant vigor of unknown origin. Edited by: Lincoln Zotarelli Selections of Persian lime ‘CNPMF–2000’, ‘CNPMF–2001’, ‘CNPMF–01’, ‘CNPMF–02’, ‘IAC–5’, ‘IAC–5.1’, ‘Bearss’, ‘Persian–58’, and ‘5059’, were therefore grafted onto Swingle citrumelo [C. paradisi Macfad. cv. Duncan × Poncirus trifoliata (L.) Raf.] rootstocks and evaluated in Cruz das Almas, Bahia, Brazil in a field experiment conducted in a completely randomized block design with five replications and two trees per plot. The biometric attributes (canopy height, diameter and volume), yield parameters (yield during the off-season harvest period, yield per plant, pro- duction efficiency), and fruit quality traits, were evaluated. The ‘CNPMF–2001’, ‘CNPMF–01’, ‘CNPMF–02’, ‘IAC–5’, and ‘Bearss’ selections had 5-11 % shorter trees than the other cultivars. ‘CNPMF–01’, ‘CNPMF–02’, ‘Persian–58’, and ‘5059’ presented higher yield efficiency values, between 3.1-3.4 kg m−3, and higher yield levels during the off-season harvest periods. The ‘Bearss’, ‘Persian–58’, ‘CNPMF–2000’, ‘IAC–5.1’ and ‘5059’ selections had more acid fruits and the latter three, smaller fruits. Based on their horticultural performance up to eight years of age, ‘CNPMF–01’, ‘CNPMF–02’, ‘Persian–58’ and ‘5059’ selections were the most promising varieties Received February 23, 2015 of Persian lime. Accepted September 03, 2015 Keywords: Citrus latifolia, rain fed cultivation, scion cultivars Introduction It is imperative to increase the genetic ba- sis of this species, since new diseases may arise and With an annual production of 1.2 million tonnes, threaten crop yields. Persian lime selections known Brazil retains approximately 8 % of the world’s produc- as ‘CNPMF–2000’ ‘CNPMF–2001’, ‘CNPMF–01’ and tion of lemons/acid limes and occupies fifth place in ‘CNPMF–02’ were obtained through open-pollination. world production of these fruits, behind only Mexico, Although it is a triploid species, when PL is cultivated India, China and Argentina (FAO, 2015). In Brazil, culti- close to other citrus it produces seeds with low fre- vation of ‘Persian’ lime (PL) [Citrus latifolia (Yu. Tanaka) quency (Santos et al., 2013). A number of these selec- Tanaka] occupies more than 47 thousand hectares with tions are being studied in the state of São Paulo, and the main producers being the state of São Paulo, with initial results are promising since there are selections a subtropical climate, followed by the states of Minas with agronomic characteristics superior to the control, Gerais and Bahia, with tropical semiarid climates ‘IAC–5’ (Bremer Neto et al., 2013). (IBGE, 2012). In 2011, PL occupied the fourth position A number of rootstock evaluation studies ob- when ranking Brazilian exports of fresh fruits with a served promising horticultural behavior in Swingle value in the market surpassed only by mangoes, grapes citrumelo [C. paradisi Macfad. cv. Duncan × Poncirus and melons (FAO, 2015). This crop has also attracted trifoliata (L.) Raf.] in combination with PL (Figueiredo the attention of producers because of the high prices et al., 2002; Espinoza-Nuñez et al., 2011). This root- commanded during the off-season of the domestic mar- stock is tolerant to CTV (Citrus tristeza virus) and to ket. CSDaV (Citrus sudden death associated virus) and has In Brazil there are only two known PL selections been used in Brazil as rootstock for PL as a substitute available, ‘IAC–5’, also known as ‘Peruano’, and ‘Que- for ‘Rangpur’ lime [C. limonia Osbeck] due to its sus- bra-galho’, a local selection contaminated by viroids (Ei- ceptibility to Phytophthora spp. and CSDaV (Pompeu ras et al., 2010) cultivated, and the most studied, in the Junior and Blumer, 2008). Due to the importance of southeastern region of the country. this species for the Brazilian citrus industry and the Despite its increasing economic expression, PL restricted number of PL selections available, the aim of cultivation still lacks research that focuses on the diver- the present study was to evaluate the initial horticultur- sification of scion and rootstock selections in comparison al performance (performance during the initial growth to the most studied groups of sweet oranges [C. sinensis period up to eight years of age) of nine PL selections (L.) Osbeck] and many tangerine varieties. grafted onto Swingle citrumelo. Sci. Agric. v.73, n.2, p.109-114, March/April 2016 110 Santos et al. Performance of ‘Persian’ lime selections Materials and Methods Biometric variables Plant height of eight-year-old trees was evaluated Location at the end of the month of August 2012. The diameter The orchard was planted in October 2004 in the and height of the canopies of the trees were measured municipality of Cruz das Almas, Recôncavo da Bahia, using a metric ruler. Height was measured from the soil Brazil (12º40’39” S, 39º06’23” W, 225 m above sea level). to the middle section of the top of the plant. The diam- The climate is classified as Ami according to the eter was measured in the direction of the planted row Köppen classification. Weather data were obtained from and perpendicular to it for calculating the mean diam- an agrometeorological station. Rain sensor and tempera- eter. The canopy volume was calculated by V = 2⁄3 π (D ture sensors were at a height of 1.5 m above the ground. ⁄ 2)2 H, whereas, V is the volume of the canopy in cubic Between 2009 and 2012, the mean annual precipitation meters, H is the height of the plant in meters and D the was 1065 mm. Climate data referring to the productive mean diameter in meters. period are shown in Figure 1. The period from June to August was characterized as the wet season and from Yield variables November to March as the dry season. The soil was clas- The Yield per plant (Y) is referred to as the total sified as Typic Haplustox (Soil Survey Staff, 2014) and mass (kg) of fruits per plant obtained in the years 2009, the experiment was conducted from 2009 to 2012 when 2010, 2011 and 2012. Yield between 2004 and 2008 was fruit production was available. not computed. The harvest was gathered every year and the values added. The cumulative yield was obtained by Plant material and cultural practices adding the yields of the four years evaluated. Nine PL selections (Table 1), grafted onto Swingle citrumelo rootstocks were planted in 5.5 m × 4.0 m spacing (454 trees per ha) under rain-fed cultivation. Table 1 – Canopy volume, plant height and average canopy diameter The following selections were used: ‘CNPMF–2000’, of nine selections of eight-year-old ‘Persian’ lime grafted onto ‘CNPMF–2001’, ‘CNPMF–01’, ‘CNPMF–02’, (from Cruz Swingle citrumelo in 2012, Cruz das Almas, BA, Brazil. das Almas, Bahia, Brazil), ‘IAC–5’, ‘IAC–5.1’ (from Cor- Selections Canopy volume Plant heigh Canopy diameter deirópolis, São Paulo, Brazil), ‘Bearss’ and ‘Persian–58’ m3 ---------------------------------- m ---------------------------------- (from Riverside, California, USA) and ‘5059’ (of un- CNPMF–2000 37.8 3.3 a 4.7 known origin). 'IAC–5' was used as a control in this CNPMF–2001 36.5 3.1 b 4.8 study because it is the main commercial PL selection. CNPMF–01 35.9 3.1 b 4.8 Over the years weed control was conducted us- CNPMF–02 36.3 3.0 b 4.8 ing a brush cutter tractor. As to the presence of harmful IAC–5 40.9 3.1 b 4.9 insects, integrated pest management was considered us- IAC–5.1 40.9 3.4 a 4.8 ing insecticides only when populations reached control BEARSS 37.0 3.1 b 4.8 levels. 5059 38.7 3.3 a 4.8 There was no directed chemical control to post PERSIAN–58 44.2 3.4 a 4.9 bloom fruit drop (PFD) caused by Colletotrichum acuta- F Test 0.18ns 0.00** 0.45ns tum in the experimental area, since this is a frequent oc- CV (%) 13 6 5 currence in commercial orchards in the region studied. Average values within columns followed by the same letter belong to the Manual pruning of dried branches and suckers was car- same group, according to the Scott-Knott test (p < 0.05). CV - Coefficient of ried out when necessary. variation; nsnon-significant; **significant at p < 0.01. Figure 1 − Rainfall and average, minimum and maximum air temperatures between Jan 2008 and Dec 2012, Cruz das Almas, BA, Brazil. Source: Meteorological Station at Embrapa Cassava and Tropical Fruits Sci. Agric. v.73, n.2, p.109-114, March/April 2016 111 Santos et al. Performance of ‘Persian’ lime selections The yield efficiency of fruits (YE) was calculated In addition, ‘CNPMF–01’ PL trees grafted onto by YE = Y ⁄ V (kg m−3) in the years 2010, 2011 and 2012. ‘Cleopatra’ mandarin (C. reshni Hort. ex Tan.) after nine The fruit percentage produced during the off-sea- years, were 4.5 m in height (Stuchi et al., 2002).
Recommended publications
  • TAHITIAN LIME(Persian
    TAHITIAN LIME (Persian Lime) Limes have many uses, including jams, jellies, marmalade and garnishing fish and other main dishes. The fruit is sold commercially as fresh fruit and also for processing although the Tahitian lime is preferred as fresh fruit because it is considered unsuitable for lime cordial products. The name “Tahitian” was given to the lime when the fruit was introduced from Tahiti to California. However, with the introduction of this variety into Australia in 1824 (possibly from Brazil) the fruit was then more commonly called the Persian lime. DESCRIPTION Large sized lime, generally 5 - 7 cm long and 4 - 6 cm in diameter. Colour of the fruit is green and pale lemon/yellow at maturity. The fruit has a distinct lime flavour and a moderate to high acidic level. The flesh at maturity is green and pulpy. Sold mainly as fresh fruit, Tahitian limes rarely have seeds and are excellent for growing in many areas of Australia. PRODUCTION OF LIME TREES Main crop harvest will vary with seasonal conditions and districts. January to March on the far North Coast areas. February to March on the Central Coast. April to July in cooler districts. The trees have little thorns and are moderately vigorous, growing from 2 to 4 metres high. Size depends on soil and rootstocks. Lime trees have the highest heat requirements of all citrus fruits and therefore grown in tropical or sub-tropical areas where better fruit quality is obtained. The trees grow continuously and are sensitive to cold. The Tahitian lime is slightly more cold resistant than other varieties, however frosts can damage both foliage and fruit.
    [Show full text]
  • Field Performance of 'Marsh Seedless' Grapefruit On
    582 Stuchi et al. FIELD PERFORMANCE OF ‘MARSH SEEDLESS’ GRAPEFRUIT ON TRIFOLIATE ORANGE INOCULATED WITH VIROIDS IN BRAZIL Eduardo Sanches Stuchi1,2*; Simone Rodrigues da Silva2; Luiz Carlos Donadio2; Otávio Ricardo Sempionato2; Eduardo Toller Reiff2 1 Embrapa Mandioca e Fruticultura Tropical, R. Embrapa s/n ,C.P. 7 - 44380-000 - Cruz das Almas, BA - Brasil. 2 Estação Experimental de Citricultura de Bebedouro, C.P. 74 - 14700-971 - Bebedouro, SP - Brasil. *Corresponding author <[email protected]> ABSTRACT: Some viroids reduce citrus tree growth and may be used for tree size control aiming the establishment of orchards with close tree spacing that may provide higher productivity than conventional ones. To study the effects of citrus viroids inoculation on vegetative growth, yield and fruit quality of ‘Marsh Seedless’ grapefruit (Citrus paradisi Macf.) grafted on trifoliate orange [Poncirus trifoliata (L.) Raf.], an experiment was set up in January 1991, in Bebedouro, São Paulo State, Brazil. The experimental design was randomized blocks with four treatments with two plants per plot: viroid isolates Citrus Exocortis Viroid (CEVd) + Hop stunt viroid (HSVd - CVd-II, a non cachexia variant) + Citrus III viroid (CVd-III) and Hop stunt viroid (HSVd - CVd-II, a non cachexia variant) + Citrus III viroid (CVd-III) and controls: two healthy buds (control), and no grafting (absolute control). Inoculation was done in the field, six months after planting by bud grafting. Both isolates reduced tree growth (trunk diameter, plant height, canopy diameter and volume). Trees not inoculated yielded better (average of eleven harvests) than inoculated ones but the productivity was the same after 150 months.
    [Show full text]
  • Arizona Department of Agriculture Environmental & Plant Services Division 1688 W
    DOUGLAS A. DUCEY MARK W. KILLIAN Governor Director Arizona Department of Agriculture Environmental & Plant Services Division 1688 W. Adams Street, Phoenix, Arizona 85007 P. (602) 542-0994 F. (602) 542-1004 SUMMARY OF EXTERIOR QUARANTINES Updated April 16, 2021 CONTACTS Jack Peterson…...…………………………………………………………………………..…Associate Director (602) 542-3575 [email protected] Rachel Paul…………………………………………………………………………...Field Operations Manager (602) 542-3243 [email protected] Jamie Legg………………………………………………………………………..Quarantine Program Manager (602) 542-0992 [email protected] INDEX Summaries………………………………………………………………………………………...……….Page 2 Nursery Stock…………………………………………………………………………...…………Page 2 House Plants……………………………………………………………………………………….Page 2 Boll Weevil Pest…………………………………………………………………………………...Page 2 Citrus Nursery Stock Pests………………………………………………………………………...Page 3 Nut Tree Pests……………………………………………………………………………………..Page 3 Nut Pests…………………………………………………………………………………………...Page 4 Lettuce Mosaic Virus……………………………………………………………………………...Page 4 Imported Fire Ants………………………………………………………………………………...Page 5 Palm Tree Pests…………………………………………………………………………………....Page 5 Noxious Weeds…………………………………………………………………………………....Page 7 Japanese beetle…………………………………………………………………………………….Page 9 Arizona Administrative Code, Title 3, Chapter 4, Article 2 Quarantine……………………..………….Page 10 April 16, 2021 www.agriculture.az.gov Page 1 SUMMARIES Nursery Stock States Regulated - All states, districts, and territories of the United States. Regulated Commodities - All trees, shrubs, vines, cacti, agaves, succulents,
    [Show full text]
  • About Limes by George Geary CCP
    All About Limes By George Geary CCP Lime History In the eighteenth century, Scottish naval surgeon Sir James Lind learned by his observation of long-haul sailors that citrus fruits conquered the dreaded scurvy (lack of Vitamin C) which had divested the ranks of the British navy more than any enemy. Between 1795 and 1815, some 1.6 million gallons of lime Juice drastically reduced the mortality rate of seamen. Along with their daily ration of rum, British sailors were required to consume a daily ration of lime Juice; hence British seamen became known as limeys. Since Britain was often at war with Mediterranean countries that exported lemons, limes imported cheaply from the English colony of Jamaica were substituted as the citrus of choice. Key Lime (also known as Mexican Lime and West Indies Lime) Cultivated for thousands of years in the Indo-Malayan region, this variety has long been treasured for its fruit and decorative foliage. The Key lime made its way to North Africa and the Near East via Arabian traders, and then carried on to Palestine and Mediterranean Europe by the Crusaders. Columbus is credited with bringing the Key lime to Haiti, where Spanish settlers to Florida carried it on. It flourished in South Florida, particularly the Florida Keys, hence the current common name of Key lime. Due to hurricane-depleted soils, locals switched from pineapple commercial crops to limes in 1906, and business boomed until a hurricane once again reared and wiped out the lime groves, never to be restored. Today, most Key limes come from Mexico.
    [Show full text]
  • Citrus from Seed?
    Which citrus fruits will come true to type Orogrande, Tomatera, Fina, Nour, Hernandina, Clementard.) from seed? Ellendale Tom McClendon writes in Hardy Citrus Encore for the South East: Fortune Fremont (50% monoembryonic) “Most common citrus such as oranges, Temple grapefruit, lemons and most mandarins Ugli Umatilla are polyembryonic and will come true to Wilking type. Because most citrus have this trait, Highly polyembryonic citrus types : will mostly hybridization can be very difficult to produce nucellar polyembryonic seeds that will grow true to type. achieve…. This unique characteristic Citrus × aurantiifolia Mexican lime (Key lime, West allows amateurs to grow citrus from seed, Indian lime) something you can’t do with, say, Citrus × insitorum (×Citroncirus webberii) Citranges, such as Rusk, Troyer etc. apples.” [12*] Citrus × jambhiri ‘Rough lemon’, ‘Rangpur’ lime, ‘Otaheite’ lime Monoembryonic (don’t come true) Citrus × limettioides Palestine lime (Indian sweet lime) Citrus × microcarpa ‘Calamondin’ Meyer Lemon Citrus × paradisi Grapefruit (Marsh, Star Ruby, Nagami Kumquat Redblush, Chironja, Smooth Flat Seville) Marumi Kumquat Citrus × sinensis Sweet oranges (Blonde, navel and Pummelos blood oranges) Temple Tangor Citrus amblycarpa 'Nasnaran' mandarin Clementine Mandarin Citrus depressa ‘Shekwasha’ mandarin Citrus karna ‘Karna’, ‘Khatta’ Poncirus Trifoliata Citrus kinokuni ‘Kishu mandarin’ Citrus lycopersicaeformis ‘Kokni’ or ‘Monkey mandarin’ Polyembryonic (come true) Citrus macrophylla ‘Alemow’ Most Oranges Citrus reshni ‘Cleopatra’ mandarin Changshou Kumquat Citrus sunki (Citrus reticulata var. austera) Sour mandarin Meiwa Kumquat (mostly polyembryonic) Citrus trifoliata (Poncirus trifoliata) Trifoliate orange Most Satsumas and Tangerines The following mandarin varieties are polyembryonic: Most Lemons Dancy Most Limes Emperor Grapefruits Empress Tangelos Fairchild Kinnow Highly monoembryonic citrus types: Mediterranean (Avana, Tardivo di Ciaculli) Will produce zygotic monoembryonic seeds that will not Naartje come true to type.
    [Show full text]
  • Supplementary Material for RUSSELL, DYRANA N., JAWWAD A
    Supplementary Material for RUSSELL, DYRANA N., JAWWAD A. QURESHI, SUSAN E. HALBERT AND PHILIP A. STANSLY−Host Suitability of Citrus and Zanthoxylum Spp. for Leuronota fagarae and Diaphorina citri (Hemiptera: Psylloidea). Florida Entomologist 97(4) (December 2014) at http://purl.fcla.edu/fcla/entomologist/browse Corresponding author: Dr. J. A. Qureshi University of Florida/IFAS Southwest Florida Research and Education Center (SWFREC) 2685 SR 29N, Immokalee, Fl 34142, USA Phone: (239) 658-3400 Fax: (239) 658-3469 E-mail: [email protected] ABSTRACT Leuronota fagarae Burckhardt (Hemiptera: Psylloidea), an exotic psyllid described from South America, was first observed in 2001on a citrus relative Zanthoxylum fagara (L.) Sarg. (Sapindales: Rutaceae) in southern Florida. Diaphorina citri Kuwayama (Hemiptera: Psylloidea) is principal vector of the bacteria ‘Candidatus Liberibacter spp.’ causal agent of huanglongbing (HLB) or citrus greening disease. Both vector and disease are now well established in Florida and also reported throughout the Americas and Asia. The host range of D. citri is limited to citrus and some rutaceous relatives. Additional vectors and host plants could accelerate spread of HLB in citrus and threaten endangered species such as Zanthoxylum coriaceum A. Rich. and Zanthoxylum flavum Vahl. Experiments were conducted to evaluate adult survival, reproduction and nymphal development of psyllids on 3 Citrus and 4 Zanthoxylum species as well as orange jasmine, Murraya paniculata (Syn. M. exotica) (Sapindales: Rutaceae), a common ornamental and preferred host of D. citri. Leuronota fagarae in single male−female pairs at 24 °C lived an average 4-47 days, 4-12 fold longer on Zanthoxylum spp. (except Z. flavum) than on citrus.
    [Show full text]
  • Tetraploid Citrumelo 4475 Rootstocks Improve Diploid Common
    www.nature.com/scientificreports OPEN Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long‑term nutrient defciency Julie Oustric1*, Stéphane Herbette2, Yann Quilichini3, Raphaël Morillon4,5, Jean Giannettini1, Liliane Berti1 & Jérémie Santini1 Nutrient defciency alters growth and the production of high‑quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient defciency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less afected by nutrient defciency than the other scion/rootstock combinations. Their greater tolerance to nutrient defciency was probably due to the better performance of the enzyme‑based antioxidant system. Nutrient defciency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient defciency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype. Fruit crops, especially citrus fruits, require large amounts of fertilizers to ensure good production and fruit qual- ity.
    [Show full text]
  • FEMA GRAS Assessment of Natural Flavor Complexes Citrus-Derived
    Food and Chemical Toxicology 124 (2019) 192–218 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox FEMA GRAS assessment of natural flavor complexes: Citrus-derived T flavoring ingredients Samuel M. Cohena, Gerhard Eisenbrandb, Shoji Fukushimac, Nigel J. Gooderhamd, F. Peter Guengeriche, Stephen S. Hechtf, Ivonne M.C.M. Rietjensg, Maria Bastakih, ∗ Jeanne M. Davidsenh, Christie L. Harmanh, Margaret McGowenh, Sean V. Taylori, a Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198- 3135, USA b Food Chemistry & Toxicology, Kühler Grund 48/1, 69126 Heidelberg, Germany c Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan d Dept. of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom e Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA f Masonic Cancer Center, Dept. of Laboratory Medicine and Pathology, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th St. SE, Minneapolis, MN, 55455, USA g Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands h Flavor and Extract Manufacturers Association, 1101 17th Street, NW Suite 700, Washington, DC, 20036, USA i Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, NW Suite 700, Washington, DC,20036,USA ARTICLE INFO ABSTRACT Keywords: In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation Citrus of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication isthe Natural flavor complex first in a series and summarizes the evaluation of54 Citrus-derived NFCs using the procedure outlined in Smith Botanical et al.
    [Show full text]
  • Survey of Phenolic Compounds Produced in Citrus
    USDA ??:-Z7 S rveyof Phenolic United States Department of Agriculture C mpounds Produced IliIIiI Agricultural Research In Citrus Service Technical Bulletin Number 1856 December 1998 United States Department of Agriculture Survey of Phenolic Compounds Agricultural Produced in Citrus Research Service Mark Berhow, Brent Tisserat, Katherine Kanes, and Carl Vandercook Technical Bulletin Number 1856 December 1998 This research project was conducted at USDA, Agricultural Research Service, Fruit and Vegetable Chem­ istry laboratory, Pasadena, California, where Berhow was a research chemist, TIsserat was a research geneticist, Kanes was a research associate, and Vandercook, now retired, was a research chemist. Berhow and Tisserat now work at the USDA-ARS National Center for AgriCUltural Utilization Research, Peoria, Illinois, where Berhow is a research chemist and Tisserat is a research geneticist. Abstract Berhow, M., B. Tisserat, K. Kanes, and C. Vandercook. 1998. Survey of Mention of trade names or companies in this publication is solely for the Phenolic Compounds Produced in Citrus. U.S. Department ofAgriculture, purpose of providing specific information and does not imply recommenda­ Agricultural Research Service, Technical Bulletin No. 1856, 158 pp. tion or endorsement by the U. S. Department ofAgriculture over others not mentioned. A survey of phenolic compounds, especially flavanones and flavone and flavonol compounds, using high pressure liquid chromatography was While supplies last, single copies of this publication may be obtained at no performed in Rutaceae, subfamily Aurantioideae, representing 5 genera, cost from- 35 species, and 114 cultivars. The average number of peaks, or phenolic USDA, ARS, National Center for Agricultural Utilization Research compounds, occurring in citrus leaf, flavedo, albedo, and juice vesicles 1815 North University Street were 21, 17, 15, and 9.3, respectively.
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • Joimalofagmoiltdraiesea
    JOIMALOFAGMOILTDRAIESEARCH VOL. XIX WASHINGTON, D. C, JULY 15, 1920 No. 8 RELATIVE SUSCEPTIBILITY TO CITRUS-CANKER OF DIFFERENT SPECIES AND HYBRIDS OF THE GENUS CITRUS, INCLUDING THE WILD RELATIVES » By GEORGE I*. PELTIER, Plant Pathologist, Alabama Agricultural Experiment Station, and Agent, Bureau of Plant Industry, United States Department of Agriculture, and WILLIAM J. FREDERICH, Assistant Pathologist, Bureau of Plant Industry, United States Department of Agriculture 2 INTRODUCTION In a preliminary report (6)3 the senior author briefly described the results obtained under greenhouse conditions for a period of six months on the susceptibility and resistance to citrus-canker of a number of plants including some of the wild relatives, Citrus fruits, and hybrids of the genus Citrus. Since that time the plants reported on have been under close observation; a third experiment has been started, and many inoculations have been made in the isolation field in southern Alabama during the summers of 1917, 1918, and 1919. Many more plants have been successfully inoculated; others have proved to be extremely sus- ceptible; while some of those tested still show considerable resistance. The results obtained up to November 1, 1919, are described in tjhis report. EXPERIMENTAL METHODS In the greenhouse, the methods used and the conditions governing the inoculations described in the preliminary report were closely fol- lowed. The same strain of the organism was used and was applied in the 1 Published with the approval of the Director of the Alabama Agricultural Experiment Station. The paper is based upon cooperative investigations between the Office of Crop Physiology and Breeding Investi- gations, Bureau of Plant Industry, United States Department of Agriculture, and the Department of Plant Pathology, Alabama Agricultural Experiment Station.
    [Show full text]
  • The Satsuma Mandarin1 Peter C
    HS195 The Satsuma Mandarin1 Peter C. Andersen and James J. Ferguson2 Scientific Name Family Citrus unshiu Marcovitch Rutaceae Common Name Origin In most citrus producing areas, satsuma mandarin is the China and Japan preferred name, but satsuma tangerine is also used (Figures 1 and 2). Distribution Satsumas are grown in cool subtropical regions of Japan, Spain, central China, Korea, Turkey, along the Black Sea in Russia, southern South Africa, South America, and on a small scale in central California and northern Florida. The world’s largest satsuma industry is located in southern Ja- pan where climatic conditions are favorable for the produc- tion of early ripening satsuma mandarins of high quality. Selection of slight mutations and seedlings from controlled pollinations over many years has resulted in a collection of Figure 1. A satsuma orchard in north Florida. over 100 cultivars that differ in date of maturity, fruit shape, Credits: P. C. Andersen color, and quality. ‘Owari’ is the primary satsuma cultivar commercially grown in Florida, but ‘Brown Select’, ‘Early St. Ann’, ‘Silverhill’, and ‘Kimbrough’ are also available. History Satsuma mandarin may have originated in China, but it was first reported in Japan more than 700 years ago, where it is now the major citrus species grown. The first recorded introduction into the United States was in Florida by George R. Hall in 1876. The name “satsuma” is credited to Figure 2. Mature satsumas ready for harvest. the wife of a United States minister to Japan, General Van Credits: P. C. Andersen 1. This document is HS195, one of a series of the Horticultural Sciences Department, UF/IFAS Extension.
    [Show full text]