Rootstocks and Mineral Nutrition of Citrus

Total Page:16

File Type:pdf, Size:1020Kb

Rootstocks and Mineral Nutrition of Citrus .97. Rootstocksand Mineral Nutrition of Citrus H. K. Wutscher Introduction Mineral nutrition of plants is a topic which has beendi~ussed s'ince the beginningof agriculture. Aristotte wrote treatises on it, and until the 15th and 16th century the consensuswas that whateverplants needto grow, it al camefrom the soil. Al- though Nicholasde Cusaand Van Helmont, after his famousexperiment with a willow cutting, had ideasthat the sourceof the materialsthat makeup a plant was not quite assimple, it wasthe work of Priesdy,Ingenhousz, and De Sausa.re,and the discoveryof photosynthesisin the 18th and early 19th century that put mineral nutrition in its proper persp..:tiveas only one facet in the metabolismof plants. The grandold men of plant physiology,Sachs and Pfeffer, worked out the basisof mineral nutrition aswe know it today in the secondhalf of the last century and gaveus an understandingof the constituentsof plant tissuesand the essentialityof someelements. In a more practi:al vein, their contemporaries,Boussingault, Liebig, Gilbert, and Lawes,showed the possibility of increagngcrop yields by applicationof mineral fertilizers. Furtherwork, mostly with solution culture, showedthe essentialityof a seriesof elementswhich plants needin only very small anounts, the so-calledmicro-elements. A greatamount of effort went into trying to find the combination of variouselements for optinum plant growth and resultedin many publicationsof little practicalvalue for 2 reasons.First, becausemuch of the wort<was donewithout the statisticaltools to separatereal from apparentdifferences, and secondb..:ause mineral uptake is a function of a mazeof subtlecross connections of environment,development, genetics, and other variouselements involved. Mineral nutrition ceasedto be a glamourtopic of research,although there was a brief revivalwhen isotopes became generally available. Mineral nutrition studiesof citrus and other tree crops havealmost becomesynonymous with leaf analysis. Following the developmentof instrumentspermitting the rapid analysisof largenumbers of samplesand the pioneeringwork of Lundegardh, a large body of knowledgehas beenbuilt up empirically correlatingthe levelsof nutrient elementsin the leavesto tree perform- ance,providing a more sensitiveand lessambiguous method than deficiency or toxicity symptomsto diagnosethe nutrient sta- tus of trees. The rangesgiven in tablesof nutrient standardsare usuallyfairly wide (2). Nevertheless,leaf levelslisted as "opti- mum" often cannot be maintainedbecause of local peculiarities,like irrigation water high in salt and variationsin soil and climate. It is easyto overestimatethe effect of mineral nutrition; miraclesare often expectedfrom fertiizer application. But the plant doesn'tnecessarily take up everythingthat's applied andas Smith (31) hasshown in a nitrogenfertilization trial, the difference in yield betweentrees starved for N and thosereceiving high levelsis often no more than 200/0. Rootstock Eff~ts Becausethe root systemis the part of the plant which absorbsmineral elements(with the exceptionof nutrients appliedas foliar sprays)it is only logical that rootstocksshould havesome influence on the compositionof the scion. Substituting a gen- etically more or le$ distinct root systemis boundto havean effect on the scion and many reports bearthis out (seeLiterature Cited); however,the influence is by no meansonesided. The scion also influencesthe sizeand composition of the root system (17). Basicallythe scion and the rootstock, becauseof their different geneticmake-ups, remain separate entities, but one can influencethe behaviorof the other within certain narrow limits. The bud union is not a major factor in nutrient differences(36). Hodgson(18, 19) and Shannonand Zaphrir (28) investigatedthese relationships using reciprocally grafted rough lemon and tri- foliate orangeplants, and plantswith 2 root systemsof the sameor both species.The scionsseemed to havea greaterinfluence on determiningplant sizethan the rootstock. Two root systemsgave no advantagein mineral uptake over one, but the rootstock specieshad distinct but different effects on the levelsof K, Ca and Fe in the leaves.Trifoliate orangeleaves were hi~er in K and lower in Cathan rough lemon leaves,regardless of rootstock,which seemsto indicate that the scion influencewas dominant in this case. Whenused as rootstock for rough lemon,trifoliate orangeimposed the pattern of lower Caand higher K on the scion. Rootstockand scion seemedto be equally effective in influencingthe Fe concentrationin the leaves,but the Fe concentrations reportedare excessivelyhigh, which castssome doubt on the m:curacyof the analyses.Two componentsdetermine the amount of an elementin the leaf; uptake by the roots and trandocation. The root only passeson materialsto the scion after its own re- quirementsare met. Analysesof plantswith deficiencies,particularly micro-elementdeficiencies, often show that while the above- groundparts arelow in someelement the roots still contain adequateor evensurprisingly high levelsof it. The trunk, of course, -98- is the site of ttanslocationand the effect of insertingan interstock of sufficient length should givesome indication on the relativeimportance of root uptake and translocation. Effectsof interstockson leaf composition of deciduousfruit trees havebeen reported (35,39). Table 1 shlPNsr~ative effectsof rootstocksand 45-cm long interstockson the leaf lev~s of 7 elementsin young grapefruittrees. The treeshad beengrown in containersfor 2 yearsbefore being planted in the field. Leaf Sllnpleswere taken from 4 two-tree plots of eachrootstock/interstock treatment 2 yearsafter planting. Analysisfor 12 ~ementsshowed no significantdifferences in P, Fe, In, Cu and Na with rootstock or interstock. In only a few instances wasit possibleto overridethe root influencewith an interstock. Treeswith Citrus macrophyllaroots and sour orangeand 'Cleopatra'mandarin interstocks had lower N levelsthan treeson C. macrophyJ/awithout an interstock. They bm aved much like treeson sour orangeand 'Cleopatra'roots. Treeswith EremocitrusgJauca hybrid interstocksand C. macrophylla roots accumulatedmore chloridesthan treesdirectly on C. macrophylla. Interstocks,with C. macrol!hylla as the common rootstock, affectedthe N concentrationin the leaves.With trifoliate interstock it washigher than with sour orange,'Cleo- patra', E~mocitrus glaucahybrid, and satsumainterstock. E. glaucahybrid interstock resultedin higher K lev~s than 'Changsha'mandarin interstock. Mn washigher with 'Savage'citrange and 'Changsha'mandarin than with E. glauca hybrid interstocks. Chlorideswere lower with sour orangeand 'Cleopatra'interstocks than with E. glaucahybrid interstock and lower with sour orangethan with 'Troyer' citrange. 'Cleopatra'mandarin interstock lowered B comparedto 'O.ri' Sat- sumointerstock. This is contrary to its behavioras a rootstock, where 'Cleopatra'is chloride-tolerantand B-sensitive(5). In spite of theseeffects of interstocks,root uptake and not tran~ocation appearsto be the dominant factor in determining leaf nutrient lev~s. There are severalreasons why eff~ts of rootstockson miner~ nutrition are important. They haveto be taken into ~. count when interpretingleaf analysisdata. Without a knowledgeof the nutritional idiosyncrasiesof a particular rootstock it is easyto misiudgethe nutritional statusof trees. The excessiveuptake of one elementcan set in motion one or more nutritional imbalancereactions, such as depressionof N by excessiveamounts of Ca (38). ExcessK depressesMg. High levelsof heavymetals can induce Fe deficiencysymptoms. At leastpart of the mechanismof rootstock influenceson fruit quality (30) is probably nutritional. If the rootstock is one of the sp~ies in the subtribal group Citrus there is some,but not too much, variation in leaf nutrient levelsbetween rootstocks, but \IIA1engratt-eompatible citrus relativesare used greater differencescan be expected. The ealtier mentionedinterstock datashowed that the interstockcausing most differencesin nutrient levels w. an E. glaucahybrid. The data in Table 2 showthatSeverinia can cause a rangeof unusualleaf nutrient patterns,among which accumulationof very high Mn levelsis the most striking feature. Chlorosisremains as a little understoodmineral nutrition pro~em, althou~ Smith et al. (33) haveshown that levelsof Fe areconsistently lower in chlorotic than greenleaves. But often only part of the leavesof a tree arechlorotic, or they are chlorotic only at certain times of the year. In Texaswe haveobselVed that asthe treesget older th~ seemto be lesschlorosis- prone. Nevertheless,rootstocks clearly influencethe tendencyof treesto showchlorosis, and this is often strikingly demon- stratedin grovescontaining trees on more than one rootstock. In the rootstock trial describedin Table2 the sanplescontained both greenand chlorotic leavesand the correlation Fe content-chlorosisis not very good. The hi~ chlorosisresistance of 'Cleopatra'mandarin rootstock is noteworthy becausethis rootstock is often thou~t of aschlorosis-prone.With the advent of Fechelates, chlorosis is no longer the seriousproblem it oncewas, but chelatesare expensiveand if other considerations permit, the selectionof a chlorosis.resistantrootstock may be the most reasonablesolution to the problem. s~t T 01erance One of the critical aspectsof differencesin mineraluptake with rootstocksis salt tolerance. Citrus is often grown in arid areaswhere the irrigation water containshigh levelsof salts. Strictly spe*ing "s~t tperar.:e" refersto only sulfatesand
Recommended publications
  • Genetic Diversity and Population Structure of Pummelo (Citrus Maxima) Germplasm in China
    Tree Genetics & Genomes (2017) 13: 58 DOI 10.1007/s11295-017-1133-0 ORIGINAL ARTICLE Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China Huiwen Yu1 & Xiaoming Yang 1 & Fei Guo1 & Xiaolin Jiang1 & Xiuxin Deng1 & Qiang Xu1 Received: 31 July 2016 /Revised: 11 March 2017 /Accepted: 19 March 2017 /Published online: 26 April 2017 # Springer-Verlag Berlin Heidelberg 2017 Abstract Pummelo (Citrus maxima) is one of the basic spe- Keywords Pummelo . Genetic diversity . Population cies of Citrus. It has been cultivated for about 4000 years in structure . Nuclear simple sequence repeat (nSSR) China, and therefore, there are abundant germplasm during the long time of culture. However, there is still a lack of a detailed study of the genetic characteristics of pummelo pop- Introduction ulation. In this study, genetic diversity and population struc- ture among 274 pummelo accessions collected in China were Citrus is one of the most important fruit crops in the world. analyzed using 31 nuclear simple sequence repeat (nSSR) The genetic background of citrus is very complicated because markers. The observed heterozygosity was calculated as of its biological characteristics, such as wide sexual compati- 0.325 and genetic differentiation Fst as 0.077. Genetic struc- bility on interspecies and intergenus levels. The complex ge- ture analysis divided the whole germplasm into three subpop- netic background has hindered the genetic studies in citrus. ulations, Pop-a, Pop-b, and Pop-c. Pop-a was composed of Exploring genetic variation within a single species will facil- accessions mostly from Southeast China, Pop-b was com- itate genetic analysis such as genome-wide association studies posed of accessions from the central region of South China, (GWAS) of important traits.
    [Show full text]
  • Reaction of Tangerines Genotypes to Elsinoe Fawcettiiunder
    Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Crop Breeding and Applied Biotechnology 11: 77-81, 2011 Brazilian Society of Plant Breeding. Printed in Brazil Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Marcelo Claro de Souza1*, Eduardo Sanches Stuchi2 and Antonio de Goes3 Received 11 February 2010 Accepted 30 September 2010 ABSTRACT - A citrus scab disease, caused by Elsinoe fawcettii, is currently found in all citrus areas throughout Brazil. That being, given the importance of this casual agent, the behavior of tangerines and hybrids influenced by this pathogen was evaluated under natural infection conditions. This study was performed with plants around 15 years old without irrigation; 100 fruits of three plants were collected during harvest season, using a grade scale varying from 0 (absence of symptoms) to 6 (severe symptoms) the level of disease severity was determined. Among the cultivars, citrus scab resistance was observed in Citrus deliciosa, C. tangerina, C. nobilis; a mandarin hybrid (C. nobilis x C. deliciosa) and a satsuma hybrid (C. unshiu x C. sinensis). Among the other genotypes, symptoms were observed with levels of severity ranging from 1 to 3, indicating moderate resistance. Key words: Citrus scab, citrus crop, resistant varieties. INTRODUCTION In Brazil, E. fawcettii is responsible for citrus scab. The disease is widespread in many humid, citrus-cultivating In many citrus production areas around the world, areas around the world and decreases fruit values on the Elsinoe fawcettii is one of the main fungi diseases found. fresh-fruit market (Feichtenberger et al. 1986). In young It attacks a wide variety of citrus species and cultivars, plants or under severe infection, it may cause significant resulting in scab disease on leaves, twigs, and fruits (Timmer fruit drop.
    [Show full text]
  • Canker and Greening – Lessons from South America by Bob Rouse and Fritz Roka
    Citrus Expo follow-up Canker and greening – lessons from South America By Bob Rouse and Fritz Roka he 2006 Citrus Expo featured citrus managers from Cecil Taylor described citrus production in the northeast Brazil and Argentina who spoke about their manage - region of Argentina where producers grow common oranges, ment programs to control citrus canker and citrus mandarins and grapefruit. Tgreening diseases. The strategies they described Argentina was devastated by tristeza in the 1940s and in have been successful and hopefully transferable to citrus the 1960s began to see canker. Initial control efforts included production in Florida. eradication, tree defoliation and spraying enough copper that The Florida canker eradication program was abandoned in trees turned blue. These efforts proved fruitless, and growers the spring of 2006 after the USDA predicted that canker demanded an end to any eradication policy. would spread by 100,000 acres before the end of the year. During these early years, windbreaks were not part of any Currently, most of the canker is south of Polk County’s State perceived solution. By the end of the 1980s, they began to re - Road 60. Since the eradication program ended, there have alize, however, that the key to canker control lies in slowing been about 100 new finds monthly. down the wind, even though they did not experience strong Grower self-inspections have accounted for 40 percent of winds. They started with low-growing plants like sugarcane, the new finds. DPI inspectors have identified the remaining maze and sunflower. By the 1990s, they saw the need for 60 percent of new canker finds.
    [Show full text]
  • Rangpur Lime X Troyer Citrange, a Hybrid Citrus Rootstock for Closely Spaced Trees
    Proc. Fla. State Hort. Soc. 99:33-35. 1986. RANGPUR LIME X TROYER CITRANGE, A HYBRID CITRUS ROOTSTOCK FOR CLOSELY SPACED TREES W. S. Castle A combination of diseases, repeated freezes, and other University of Florida, IFAS factors has reemphasized the importance of rootstocks in Citrus Research and Education Center Florida. Moreover, the effects of these factors illustrate the 700 Experiment Station Road inherent weaknesses in virtually all citrus rootstocks and Lake Alfred, FL 33850 the need to continually search for new, improved ones. Another recent trend related to rootstocks has been C. O. YOUTSEY the shift toward more closely spaced trees, particularly FDACS, Division of Plant Industry within the row (7,8). Rootstocks well-suited for dense plan Citrus Budwood Registration Bureau tings have not been available although such stocks are 3027 Lake Alfred Road being evaluated and one appears particularly promising Winter Haven, FL 33881 (1, 3, 4, 8). It is a hybrid of Rangpur lime and Troyer D. J. Hutchison citrange (RxT) and has been under study in Florida for 18 United States Department of Agriculture yr. During this period, trees on RxT have demonstrated Agricultural Research Service sufficient commercial potential to justify our presentation 2120 Camden Road in this report of their performance and a description of Orlando, FL 32803 RxT and its characteristics. Additional index words. Blight, tristeza, tree size control. History Dr. J. R. Furr, formerly a plant breeder with the U.S. Abstract. A hybrid of Rangpur lime (Citrus limonia Osb.) and Department of Agriculture (USDA) at Indio, California, Troyer citrange [ C. sinensis (L) Osb.
    [Show full text]
  • Literature Research
    Literature Search 20. Literature Search Growing Lemons in Australia - a production manual© 20 — 1 Literature Search Abu-Awwad, A.M. 2001. Influence of Different Water Quantities and Qualities on Lemon trees and Soil Salt Distribution at the Jordan Valley. Agricultural Water Management 52: 53-71. Young lemon trees (Eureka) were studied for five years (1996-2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. In saline substrates Na+ and C1- are usually the dominant ions. The lemon tree is a salt-sensitive crop to salinity, and even low salt concentrations may affect its growth and productivity. A field experiment was conducted to investigate the influence of different water and salinity levels on the development of young lemon (Eureka) trees. Materials and Methods A field experiment was conducted for 5 years. One dripper per tree for the first year, two drippers 1.0 m apart per tree for the second year, and thereafter four drippers 1.0 m apart. 8L/hr of five water levels and three water qualities. Conclusion Increasing irrigation water salinity increased salt concentration and osmotic potential in the root zone, and consequently reduced lemon annual water use, stem diameter and fruit yield. Regardless of irrigation water salinity, the significantly highest fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage shaded area. Adriaensens, S.Z., Past and Present Situation of the Spanish Citrus Industry, 1993. Lemon group The Verna is a typically Spanish variety of unknown origin.
    [Show full text]
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang
    [Show full text]
  • Classification and Cultivars
    1 Classification and Cultivars 2 Two Tribes • Clauseneae • Citreae has 3 Subtribes –Triphasiinae –Balsamocitrineae –Citrinae 3 Fortunella • Four species - Small trees and shrubs. • Flowers later than Citrus. • Freeze - hardy • Small fruit –‘Meiwa’ and ‘Marumi’ - round –‘Nagami’ ovate 4 Poncirus • Two trifoliate spp. –trifoliata ‘Flying Dragon’ –poyandra • Deciduous • Thorny, Cold hardy, long thorns • Makes great hedges , rootstocks 5 Microcitrus • Northeastern rainforest Australia • Moderate-sized trees. • Leaves are unifoliate dimorphic • Microcitrus australasica –Resistant to burrowing nematode and phytophthora • Micro leaves, flowers, and fruit 6 Clymenia • Unifoliate acuminate leaves tapering into very short petiole. • Branches are thornless. • Style shorter than other true Citrus and stigma is larger and flattened • Fruit - ovoid, thin peeled, many oil glands, many small seeds. 7 Eremocitrus • Xerophytic native of Australia • Spreading long drooping branches • Leaves unifoliate, greyish green, thick, leatherly, and lanceolate. • Sunken stomata, freeze hardy • Ideal xeroscape plant. 8 Citrus - Subgenus Eucitrus • Vesicles - no acrid or bitter oil • C. medica (Citrons) –Uses - candied peel, • Jewish ceremony • Exocortis indicator 9 Citrus limon (Lemons) • Commerce –‘Lisbon’ and ‘Eureka’ • Dooryard –Meyer (Lemon hybrid) • Rough Lemon –Rootstock 10 Lemon Hybrids • Lemonage (lemon x sweet orange) • Lemonime (lemon x lime) • Lemandrin (lemon x mandarin) • Eremolemon (Eremocitrus x lemon) - Australian Desert Lemon 11 Citrus aurantifolia (Limes) • ‘Key’ or ‘Mexican’ limes • ‘Tahiti’ or ‘Persian’ limes some are triploids and seedless • C. macrophylla (lime-like fruit) –Rootstock in California • Lemonimes (lime x lemon) • Limequats (lime x kumquat) 12 • Not grown either in Tahiti or Persian (Iran) • Seedless and marketed when still dark green 13 C. aurantium - Sour Orange • ‘Seville’ in Southern Europe –Orange marmalade • ‘Bouquet’ & ‘Bergamot’ • - Italy –Essential oil • Many forms like ‘Bittersweet’ –Rootstock - High quality fruit.
    [Show full text]
  • Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida
    Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida Prepared: November, 2001 General Production Information ● Lime in this crop profile refers to the 'Tahiti' lime (Citrus latifolia). Pest management practices of other members of the Rutaceae such as Key lime (Citrus aurantifolia), pummelo (Citrus grandis), and kumquat (Fortunella sp.) may also be described, since survey questionnaires grouped these four tropical fruits together. All of these species of citrus are grown for the fresh market. ● The 1997-1998 average yield of limes in Florida was 14,344 pounds per acre. At a price of $5.02 per box, the Florida crop (440,000 boxes) was worth approximately $2.21 million (1). ● In 2000-2001, 1,171 acres in Florida produced 22 million pounds of 'Tahiti' lime. This is a 58 percent decrease from the previous year, when 53 million pounds were recorded (2,3). ● As of the end of 2000, there has been a 63 percent reduction in lime acreage since 1996 (bearing acreage of 3,168 acres). Except for 20 acres, all of the lime production is located in Miami-Dade County. Consequently, ninety-eight percent of 'Tahiti' lime production occurs in this county (3). ● Florida was ranked first in the United States in lime production. No other states were listed as leading lime-producers (1). ● Reductions in lime acreage have occurred due to Hurricane Andrew and citrus canker. Bearing acreage before Andrew was approximately 6,000 acres, which dropped drastically to 1,668 acres after this event (4). An estimated 290,000 lime trees (2,800 acres) have been lost to citrus canker in the 2000-2001 period (2).
    [Show full text]
  • Breeding Citrus for Cold Hardiness
    66 FLORIDA STATE HORTICULTURAL SOCIETY, 1959 LITERATURE CITED liminary studies on cold hardiness in citrus as related to cambiai activity and bud growth. Proc. Ann. Rio Grande 1. Camp, A. F., H. AAowry and K. W. Loucks. The effect Valley Hort. Inst. 9:1-15. 1955. of soil temperature on the germination of citrus seeds. Am. 9. Fawcett, H. S. Temperature experiments in germinat Jour. Bot. 20:348-357. 1933. ing orange seed. Calif. Citrog. 14:5-15. 1929. 2. Cathey, H. AA. Mutual antagonism of growth control 10. Girton, R. E. The growth of citrus seedlings as in of Chrysanthemum morifolium by gibberellin and Amo-1618. fluenced by environmental factors. Calif. Univ. publication Proc. Plant Physiol. meetings 33:43. 1958. Agr. Sci. 5:83117. 1927. 3. Cooper, W. C. Periodicity of growth and dormancy , 11. Lawless, W. W. Effect of freeze damage on citrus in citrus—a review with some observations on conditions in trees and fruit in relation to growth practices. Proc. Fla. the Lower Rio Grande Valley of Texas. Jour. Rio Grande State Hort. Soc. 54:67-74. 1941. Valley Hort. Soc. 11:3-10. 1957. 12. Lawless, W. W. and A. F. Camp. Preliminary report 4. Cooper, W. C. Influence of rootstock on injury and on various fertilizers and other factors as influencing cold recovery of young citrus trees exposed to the freezes of resistance in citrus. Proc. Fla. State Hort. Soc. 53:120-125. 1950-51 in the Rio Grande Valley. Proc. Ann. Rio Grande 1940. Valley Hort. Inst. 6:16-24. 1952. 13. Peltier, G.
    [Show full text]
  • Citrus from Seed?
    Which citrus fruits will come true to type Orogrande, Tomatera, Fina, Nour, Hernandina, Clementard.) from seed? Ellendale Tom McClendon writes in Hardy Citrus Encore for the South East: Fortune Fremont (50% monoembryonic) “Most common citrus such as oranges, Temple grapefruit, lemons and most mandarins Ugli Umatilla are polyembryonic and will come true to Wilking type. Because most citrus have this trait, Highly polyembryonic citrus types : will mostly hybridization can be very difficult to produce nucellar polyembryonic seeds that will grow true to type. achieve…. This unique characteristic Citrus × aurantiifolia Mexican lime (Key lime, West allows amateurs to grow citrus from seed, Indian lime) something you can’t do with, say, Citrus × insitorum (×Citroncirus webberii) Citranges, such as Rusk, Troyer etc. apples.” [12*] Citrus × jambhiri ‘Rough lemon’, ‘Rangpur’ lime, ‘Otaheite’ lime Monoembryonic (don’t come true) Citrus × limettioides Palestine lime (Indian sweet lime) Citrus × microcarpa ‘Calamondin’ Meyer Lemon Citrus × paradisi Grapefruit (Marsh, Star Ruby, Nagami Kumquat Redblush, Chironja, Smooth Flat Seville) Marumi Kumquat Citrus × sinensis Sweet oranges (Blonde, navel and Pummelos blood oranges) Temple Tangor Citrus amblycarpa 'Nasnaran' mandarin Clementine Mandarin Citrus depressa ‘Shekwasha’ mandarin Citrus karna ‘Karna’, ‘Khatta’ Poncirus Trifoliata Citrus kinokuni ‘Kishu mandarin’ Citrus lycopersicaeformis ‘Kokni’ or ‘Monkey mandarin’ Polyembryonic (come true) Citrus macrophylla ‘Alemow’ Most Oranges Citrus reshni ‘Cleopatra’ mandarin Changshou Kumquat Citrus sunki (Citrus reticulata var. austera) Sour mandarin Meiwa Kumquat (mostly polyembryonic) Citrus trifoliata (Poncirus trifoliata) Trifoliate orange Most Satsumas and Tangerines The following mandarin varieties are polyembryonic: Most Lemons Dancy Most Limes Emperor Grapefruits Empress Tangelos Fairchild Kinnow Highly monoembryonic citrus types: Mediterranean (Avana, Tardivo di Ciaculli) Will produce zygotic monoembryonic seeds that will not Naartje come true to type.
    [Show full text]
  • Supplementary Material for RUSSELL, DYRANA N., JAWWAD A
    Supplementary Material for RUSSELL, DYRANA N., JAWWAD A. QURESHI, SUSAN E. HALBERT AND PHILIP A. STANSLY−Host Suitability of Citrus and Zanthoxylum Spp. for Leuronota fagarae and Diaphorina citri (Hemiptera: Psylloidea). Florida Entomologist 97(4) (December 2014) at http://purl.fcla.edu/fcla/entomologist/browse Corresponding author: Dr. J. A. Qureshi University of Florida/IFAS Southwest Florida Research and Education Center (SWFREC) 2685 SR 29N, Immokalee, Fl 34142, USA Phone: (239) 658-3400 Fax: (239) 658-3469 E-mail: [email protected] ABSTRACT Leuronota fagarae Burckhardt (Hemiptera: Psylloidea), an exotic psyllid described from South America, was first observed in 2001on a citrus relative Zanthoxylum fagara (L.) Sarg. (Sapindales: Rutaceae) in southern Florida. Diaphorina citri Kuwayama (Hemiptera: Psylloidea) is principal vector of the bacteria ‘Candidatus Liberibacter spp.’ causal agent of huanglongbing (HLB) or citrus greening disease. Both vector and disease are now well established in Florida and also reported throughout the Americas and Asia. The host range of D. citri is limited to citrus and some rutaceous relatives. Additional vectors and host plants could accelerate spread of HLB in citrus and threaten endangered species such as Zanthoxylum coriaceum A. Rich. and Zanthoxylum flavum Vahl. Experiments were conducted to evaluate adult survival, reproduction and nymphal development of psyllids on 3 Citrus and 4 Zanthoxylum species as well as orange jasmine, Murraya paniculata (Syn. M. exotica) (Sapindales: Rutaceae), a common ornamental and preferred host of D. citri. Leuronota fagarae in single male−female pairs at 24 °C lived an average 4-47 days, 4-12 fold longer on Zanthoxylum spp. (except Z. flavum) than on citrus.
    [Show full text]
  • Tetraploid Citrumelo 4475 Rootstocks Improve Diploid Common
    www.nature.com/scientificreports OPEN Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long‑term nutrient defciency Julie Oustric1*, Stéphane Herbette2, Yann Quilichini3, Raphaël Morillon4,5, Jean Giannettini1, Liliane Berti1 & Jérémie Santini1 Nutrient defciency alters growth and the production of high‑quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient defciency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less afected by nutrient defciency than the other scion/rootstock combinations. Their greater tolerance to nutrient defciency was probably due to the better performance of the enzyme‑based antioxidant system. Nutrient defciency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient defciency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype. Fruit crops, especially citrus fruits, require large amounts of fertilizers to ensure good production and fruit qual- ity.
    [Show full text]