Notch Signaling, Brain Development, and Human Disease

Total Page:16

File Type:pdf, Size:1020Kb

Notch Signaling, Brain Development, and Human Disease 0031-3998/05/5705-0104R PEDIATRIC RESEARCH Vol. 57, No. 5, Pt 2, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Notch Signaling, Brain Development, and Human Disease JOSEPH L. LASKY AND HONG WU University of California, Los Angeles School of Medicine, Department of Molecular and Medical Pharmacology, Los Angeles, California, 90025 ABSTRACT The Notch signaling pathway is central to a wide array of summarizes what is currently known about the role of the Notch developmental processes in a number of organ systems, includ- pathway in neural stem cells, gliogenesis, learning and memory, ing hematopoiesis, somitogenesis, vasculogenesis, and neuro- and neurologic disease. (Pediatr Res 57: 104R–109R, 2005) genesis. These processes involve maintenance of stem cell self- renewal, proliferation, specification of cell fate or differentiation, Abbreviations and apoptosis. Recent studies have led to the recognition of the FCD, focal cortical dysplasia role of the Notch pathway in early neurodevelopment, learning, ICD, intracellular domain and memory, as well as late-life neurodegeneration. This review PS1, presenilin1 The formation of the mammalian nervous system takes place interacts with Notch ligands, such as Delta or Serrate (in via a number of developmental steps. All phases of brain Drosophila), on an adjacent cell (Fig. 1). This interaction development involve the recurrent themes of induction, cell triggers two proteolytic events culminating in the release of the proliferation, cell fate determination (differentiation), cell Notch ICD. The free intracellular fragment then translocates to movement (migration), cell process formation, and targeting the nucleus where it binds to the transcriptional regulator CSL (synapse formation) (1). Signaling pathways involved in these [for CBF-1, Su(H), and LAG-1], resulting in displacement of processes are regulated not only in space, but in time and co-repressors previously bound to CSL and recruitment of intensity as well. A vast array of signaling events are coordi- co-activators. The co-activators then induce expression of the nated such that cells proliferate and differentiate at the correct Hairy-Enhancer of Split (HES) and Hes-related proteins time, space, and orientation to generate an amazingly orga- (HERP) gene families, although recent data suggest that CSL- nized structure capable of adaptability and plasticity. The independent pathways may also exist (2–4). It is also important Notch signaling pathway, originally discovered in Drosophila, to note that in mammals there exist multiple subtypes of each impinges on a wide array of cellular processes including “actor” in this pathway including Notch1–4, Delta-like ligands maintenance of stem cell self-renewal, proliferation, specifica- (Dll)-1,-3, and -4, and Serrate-like ligands (Jagged-1 and -2) tion of cell fate or differentiation, and apoptosis. What follows (3). This becomes relevant later on in this review in that is a review of the role of the Notch signaling pathway in various human diseases are usually associated with a particular neurodevelopmental processes and its role in the pathogenesis Notch gene. Notch is involved in mediating two distinct types of certain human neurologic diseases. of cell-cell signaling interactions: lateral and inductive signal- ing (5,6). Studies in Drosophila revealed the importance of DISCUSSION Notch in the control of cellular differentiation by lateral inhi- Notch signaling. The Notch gene encodes a receptor with a bition, which ensures that two distinct cell types are produced single transmembrane domain. Although initially synthesized in correct numbers from a population of initially equipotent as a single protein, it is cleaved in two and exists as a cells (7). For example, in Drosophila, Delta signaling to Notch heterodimeric receptor embedded in the plasma membrane. induces the Notch responding cell to remain a progenitor cell, Signaling is initiated when a Notch receptor on one cell whereas the Delta-expressing cell differentiates into a neural cell (8). Although the equipotent cells initially express equiv- Received January 4, 2005; accepted January 31, 2005. alent levels of both ligands and receptors, via a negative Correspondence: Joseph L. Lasky, M.D., Department of Molecular and Medical feedback mechanism, the Notch responding cell down- Pharmacology, UCLA School of Medicine, 650 Charles Young, Dr, 23-234 CHS, P.O. Box 951735, Los Angeles, CA 90095-1735; E-mail: [email protected] regulates its own Delta ligand expression effectively blocking Supported in part by NCI Cancer Education Grant R25 CA 098010. Notch receptor pathway activity in the Delta signaling cell 104R NOTCH, BRAIN DEVELOPMENT, AND DISEASE 105R Figure 1. The heterodimeric Notch receptor, upon contact with its ligand (e.g. Delta) undergoes proteolytic cleavage first by an ADAM family protease and then by ␥-secretase/presenilin1. This liberates the intracellular domain of Notch (ICD) allowing it to translocate into the nucleus where it displaces co-repressors (CoR) from the CSL transcription factor. Subsequent binding to CSL then occurs and recruitment of co-activators (CoA) results in the tran- scriptional activation of downstream target genes. (Fig. 2A). Inductive signaling, on the other hand, involves Notch receptor and ligand expressed on two different cell types such that Notch is only activated in the receptor-bearing cell, resulting in a cell-fate decision (Fig. 2B). This role for Notch signaling has been demonstrated in multiple settings including T-cell lineage specification (9,10), mammalian keratinocyte differentiation (11), and mammalian gliogenesis (12–14). The importance of these mechanisms is illustrated by their conser- vation across multiple species, from Drosophila and Caeno- rhabditis elegans to amphibians and mice (8,15–18). Stem cell maintenance. In Drosophila, Notch prevents early Figure 2. (A) Model of lateral inhibition: Two initially equipotent cells express equal levels of the Notch receptor and Delta ligand. If levels of a neurocompetence in ectodermal cells via interplay with the “proneural” fluctuate so as to increase in the cell on the right, Delta ligand Wnt signaling pathway (19,20). Although this particular role expression increases and Notch decreases in that cell, and neural differentiation has not yet been shown to be active in vertebrates, other commences. Secondary to increased Delta ligand exposure, an opposite pattern Notch1-mediated signaling pathways are crucial for mamma- in the left cell results such that Delta ligand expression is down-regulated and lian CNS development via maintenance of a neural stem cell Notch signaling predominates resulting in maintenance of an uncommitted progenitor state. (B) Example of inductive signaling: A neural stem cell (progenitor) state, inhibition of neuronal commitment, and expressing the Notch receptor may interact with a variety of cells depending on promotion of glial fates (12,21). Notch1 mouse mutant em- its environmental context. In this figure, for example, the Notch expressing cell bryos die before E11.5, near to the time when the first neurons may come into contact with an already committed neurogenic precursor express their mature, differentiated phenotype (17). However, expressing the Delta ligand. This contact initiates a cascade of signaling events close examination of mutant embryos revealed hypoplastic that, along with other cell extrinsic signals, results in glial fate commitment even in the setting of a strong pro-neurogenic signal such as BMP2 (14). In the brains and neural tubes secondary to a loss of neuroblasts and absence of this cell contact, the neural progenitor is instructed toward neuronal premature neuronal differentiation (22). Further support for the development. role of the Notch pathway in the inhibition of neuronal differ- entiation came from studies on PS1 (presenilin), which is a component of the ␥-secretase complex that allows for the for Notch signaling (12). In Hes1/Hes5 double mutant mice, efficient proteolytic release of the Notch ICD. PS1 knock-out virtually all the neural stem cells differentiate prematurely into mice (PS1Ϫ/Ϫ) also experience a reduction in the neural neurons resulting in severely disorganized neural tube mor- progenitor population (23). Consistent with these findings, phology and absence of development of normal brain struc- overexpression of Notch also promotes maintenance of neural tures (25). However, initial stem cell generation seems inde- precursors (13,24). The downstream signaling pathways re- pendent of Notch signaling (26). Recently, two forms of the sponsible for these effects are being elucidated. The basic mammalian neural stem cell have been proposed: the “primi- helix-loop-helix genes Hes1 and Hes5 are the major effectors tive” neural stem cell, isolated from E5.5 to E7.5 mouse 106R LASKY AND WU embryos that possess self-renewal capacity and neural multi- in postnatal developmental processes. Interest in Notch with potentiality, but also contain some non-neural properties (27); regards to plasticity and other higher brain functioning began and the “definitive” neural stem cell, which, generally isolated with its link to the presenilins that were initially discovered initially at E8.5, are FGF2 responsive (28). Notch1 appears to during early research on the genetic basis of Alzheimer’s be required for the transition from the primitive neural stem disease, which will not be further discussed, given excellent cell to the definitive
Recommended publications
  • Oxytocin Induces Differentiation of P19 Embryonic Stem Cells to Cardiomyocytes
    Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes Joanne Paquin*†‡, Bogdan A. Danalache*†§, Marek Jankowski§, Samuel M. McCann¶, and Jolanta Gutkowska§ *Laboratoire de Neuroendocrinologie De´veloppementale, De´partement de Chimie et de Biochimie, Universite´du Que´bec, Montreal, QC, Canada H3C 3P8; §Laboratoire de Biochimie Cardiovasculaire, Centre Hospitalier de l’Universite´de Montre´al (CHUM), Hoˆtel-Dieu, Montreal, QC, Canada H2W 1T7; and ¶Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808-4124 Contributed by Samuel M. McCann, May 17, 2002 We recently discovered the existence of the oxytocin͞oxytocin been shown to have an influence on the developing heart: OT receptor (OT͞OTR) system in the heart. Activation of cardiac OTR administered in excess to the fetus may impair cardiac growth in stimulates the release of atrial natriuretic peptide (ANP), which is humans and rats (19, 20), and OTR suppression by specific OT involved in regulation of blood pressure and cell growth. Having antagonists (OTAs) in the early stage of chicken egg development observed elevated OT levels in the fetal and newborn heart at a leads to cardiac malformation in the embryos.ʈ It is not known stage of intense cardiomyocyte hyperplasia, we hypothesized a whether the trophic effects of OT on the heart are direct or indirect. role for OT in cardiomyocyte differentiation. We used mouse P19 OT’s indirect actions could be related to its cardiovascular embryonic stem cells to substantiate this potential role. P19 cells functions observed in adult rats (7, 21–23). Indeed, we uncovered give rise to the formation of cell derivatives of all germ layers.
    [Show full text]
  • Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells
    The Journal of Neuroscience, March 5, 2008 • 28(10):2551–2562 • 2551 Development/Plasticity/Repair Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells Delphine Delaunay,1,2 Katharina Heydon,1,2 Ana Cumano,3 Markus H. Schwab,4 Jean-Le´on Thomas,1,2 Ueli Suter,5 Klaus-Armin Nave,4 Bernard Zalc,1,2 and Nathalie Spassky1,2 1Inserm, Unite´ 711, 75013 Paris, France, 2Institut Fe´de´ratif de Recherche 70, Faculte´deMe´decine, Universite´ Pierre et Marie Curie, 75013 Paris, France, 3Inserm, Unite´ 668, Institut Pasteur, 75724 Paris Cedex 15, France, 4Max-Planck-Institute of Experimental Medicine, D-37075 Goettingen, Germany, and 5Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), ETH Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland The question of how neurons and glial cells are generated during the development of the CNS has over time led to two alternative models: either neuroepithelial cells are capable of giving rise to neurons first and to glial cells at a later stage (switching model), or they are intrinsically committed to generate one or the other (segregating model). Using the developing diencephalon as a model and by selecting a subpopulation of ventricular cells, we analyzed both in vitro, using clonal analysis, and in vivo, using inducible Cre/loxP fate mapping, the fate of neuroepithelial and radial glial cells generated at different time points during embryonic development. We found that, during neurogenic periods [embryonic day 9.5 (E9.5) to 12.5], proteolipid protein ( plp)-expressing cells were lineage-restricted neuronal precursors, but later in embryogenesis, during gliogenic periods (E13.5 to early postnatal), plp-expressing cells were lineage-restricted glial precursors.
    [Show full text]
  • Notch-Signaling in Retinal Regeneration and Müller Glial Plasticity
    Notch-Signaling in Retinal Regeneration and Müller glial Plasticity DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kanika Ghai, MS Neuroscience Graduate Studies Program The Ohio State University 2009 Dissertation Committee: Dr. Andy J Fischer, Advisor Dr. Heithem El-Hodiri Dr. Susan Cole Dr. Paul Henion Copyright by Kanika Ghai 2009 ABSTRACT Eye diseases such as blindness, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are highly prevalent in the developed world, especially in a rapidly aging population. These sight-threatening diseases all involve the progressive loss of cells from the retina, the light-sensing neural tissue that lines the back of the eye. Thus, developing strategies to replace dying retinal cells or prolonging neuronal survival is essential to preserving sight. In this regard, cell-based therapies hold great potential as a treatment for retinal diseases. One strategy is to stimulate cells within the retina to produce new neurons. This dissertation elucidates the properties of the primary support cell in the chicken retina, known as the Müller glia, which have recently been shown to possess stem-cell like properties, with the potential to form new neurons in damaged retinas. However, the mechanisms that govern this stem-cell like ability are less well understood. In order to better understand these properties, we analyze the role of one of the key developmental processes, i.e., the Notch-Signaling Pathway in regulating proliferative, neuroprotective and regenerative properties of Müller glia and bestow them with this plasticity.
    [Show full text]
  • Differential Timing and Coordination of Neurogenesis and Astrogenesis
    brain sciences Article Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions Allison M. Bond 1, Daniel A. Berg 1, Stephanie Lee 1, Alan S. Garcia-Epelboim 1, Vijay S. Adusumilli 1, Guo-li Ming 1,2,3,4 and Hongjun Song 1,2,3,5,* 1 Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (A.M.B.); [email protected] (D.A.B.); [email protected] (S.L.); [email protected] (A.S.G.-E.); [email protected] (V.S.A.); [email protected] (G.-l.M.) 2 Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 4 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 5 The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development.
    [Show full text]
  • Postnatal Neurogenesis and Gliogenesis in the Olfactory Bulb from NG2-Expressing Progenitors of the Subventricular Zone
    10530 • The Journal of Neuroscience, November 17, 2004 • 24(46):10530–10541 Development/Plasticity/Repair Postnatal Neurogenesis and Gliogenesis in the Olfactory Bulb from NG2-Expressing Progenitors of the Subventricular Zone Adan Aguirre and Vittorio Gallo Center for Neuroscience Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC 20010 We used a 2Ј,3Ј-cyclic nucleotide 3Ј-phosphodiesterase (CNP)–enhanced green fluorescent protein (EGFP) transgenic mouse to study postnatal subventricular zone (SVZ) progenitor fate, with a focus on the olfactory bulb (OB). The postnatal OB of the CNP–EGFP mouse contained EGFP ϩ interneurons and oligodendrocytes. In the anterior SVZ, the majority of EGFP ϩ progenitors were NG2 ϩ. These NG2 ϩ/EGFP ϩ progenitors expressed the OB interneuron marker Er81, the neuroblast markers doublecortin (DC) and Distalless-related homeobox (DLX), or the oligodendrocyte progenitor marker Nkx2.2. In the rostral migratory stream (RMS), EGFP ϩ cells displayed a migrating phenotype. A fraction of these cells were either NG2 Ϫ/Er81 ϩ/DC ϩ/DLX ϩ or NG2 ϩ/Nkx2.2 ϩ. DiI (1,1Ј-dioctadecyl-3,3,3Ј,3Ј- tetramethylindocarbocyanine perchlorate) injection into the lateral ventricle (LV) of early postnatal mice demonstrated that NG2ϩ/ EGFP ϩ progenitors migrate from the SVZ through the RMS into the OB. Moreover, fluorescence-activated cell-sorting-purified NG2ϩ/ CNP–EGFP ϩ or NG2 ϩ/␤-actin–enhanced yellow fluorescent protein-positive (EYFP ϩ) progenitors transplanted into the early postnatal LV displayed extensive rostral and caudal migration. EYFP ϩ or EGFP ϩ graft-derived cells within the RMS were DLX ϩ/Er81 ϩ or Nkx2.2 ϩ, migrated to the OB, and differentiated to interneurons and oligodendrocytes.
    [Show full text]
  • Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone
    The Journal of Neuroscience, February 5, 2014 • 34(6):2231–2243 • 2231 Development/Plasticity/Repair Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone Yukari Shigemoto-Mogami,1 Kazue Hoshikawa,1 James E. Goldman,2 Yuko Sekino,1 and Kaoru Sato1 1Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan, and 2Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Although microglia have long been considered as brain resident immune cells, increasing evidence suggests that they also have physio- logical roles in the development of the normal CNS. In this study, we found large numbers of activated microglia in the forebrain subventricular zone (SVZ) of the rat from P1 to P10. Pharmacological suppression of the activation, which produces a decrease in levels of a number of proinflammatory cytokines (i.e., IL-1␤, IL-6, TNF-␣, and IFN-␥) significantly inhibited neurogenesis and oligodendro- genesis in the SVZ. In vitro neurosphere assays reproduced the enhancement of neurogenesis and oligodendrogenesis by activated microglia and showed that the cytokines revealed the effects complementarily. These results suggest that activated microglia accumulate in the early postnatal SVZ and that they enhance neurogenesis and oligodendrogenesis via released cytokines. Key words: cytokine; microglia; neurogenesis; neurosphere; oligodendrogenesis; subventricular zone Introduction SVZ
    [Show full text]
  • Transcription Factor Lhx2 Is Necessary and Sufficient to Suppress
    Transcription factor Lhx2 is necessary and sufficient PNAS PLUS to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus Lakshmi Subramaniana,1, Anindita Sarkara,1, Ashwin S. Shettya, Bhavana Muralidharana, Hari Padmanabhana, Michael Piperb, Edwin S. Monukic, Ingolf Bachd, Richard M. Gronostajskie,f, Linda J. Richardsb, and Shubha Tolea,2 aDepartment of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; bQueensland Brain Institute and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; cDepartment of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, CA 92697; dPrograms in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605; eDepartment of Biochemistry, State University of New York, Buffalo, NY 14203; and fDevelopmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203 AUTHOR SUMMARY During the development of the verte- memory. We used two approaches to brate CNS, progenitor cells generate disrupt Lhx2 function in progenitors at neurons, the primary players in circuits, the peak of hippocampal neurogenesis, and glia, the support cells. A character- embryonic gestation day (E) 15. Condi- istic feature of this process, common to tional KO mice were used, in which the all vertebrate species, is that the pro- gene encoding Lhx2 protein was dis- duction of neurons precedes that of glial rupted by the introduction of an enzyme cells (1). The transition from neuro- called “Cre recombinase,” which can cut genesis to gliogenesis determines the and paste DNA (2). The second ap- number of neurons vs. support cells that proach used a “dominant-negative” con- NEUROSCIENCE are produced in a given structure.
    [Show full text]
  • Concerted Control of Gliogenesis by Inr/TOR and FGF Signalling in the Drosophila Post-Embryonic Brain Amélie Avet-Rochex1, Aamna K
    RESEARCH ARTICLE 2763 Development 139, 2763-2772 (2012) doi:10.1242/dev.074179 © 2012. Published by The Company of Biologists Ltd Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain Amélie Avet-Rochex1, Aamna K. Kaul1, Ariana P. Gatt1, Helen McNeill2 and Joseph M. Bateman1,* SUMMARY Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis.
    [Show full text]
  • Cep215 Is Essential for Morphological Differentiation of Astrocytes
    www.nature.com/scientificreports OPEN Cep215 is essential for morphological diferentiation of astrocytes Donghee Kang1,3, Wonjung Shin1,3, Hyunjeong Yoo1, Seongjae Kim1, Seongju Lee2 & Kunsoo Rhee1* Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specifc subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological diferentiation of astrocytes. Cep215 was specifcally localized at the glial processes as well as centrosomes in developing astrocytes. Morphological diferentiation of astrocytes was suppressed in the Cep215- deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confrm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specifcation. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte diferentiation. Microtubule is an important building block for cellular morphogenesis. During neurogenesis, microtubules are nucleated from the centrosome in early phase 1. However, in late phase, the centrosome loses its microtubule organizing activity as soon as it loses pericentriolar material (PCM) proteins 1. Instead, non-centrosomal micro- tubules play critical roles for neuronal morphogenesis2. It is known that microtubule nucleating factors, such as Tpx2 and the Haus complex, locally regulate microtubule nucleation outside the centrosome3,4. Non-centrosomal microtubule organization is also observed in other diferentiated cells as well 5,6. Cep215 (also known as Cdk5rap2) is a major PCM protein with at least two functional domains: CM1 is essential for interaction with γ-tubulin ring complex (γ-TuRC)7 and CM2 is essential for interaction with specifc centrosome proteins, such as pericentrin and Akap4508.
    [Show full text]
  • Arsenic Inhibits P19 Stem Cell Differentiation by Altering
    Clemson University TigerPrints All Dissertations Dissertations 12-2015 ARSENIC INHIBITS P19 STEM CELL DIFFERENTIATION BY ALTERING MICRORNA EXPRESSION AND REPRESSING THE SONIC HEDGEHOG SIGNALING PATHWAY Jui Tung Liu Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Molecular Biology Commons Recommended Citation Liu, Jui Tung, "ARSENIC INHIBITS P19 STEM CELL DIFFERENTIATION BY ALTERING MICRORNA EXPRESSION AND REPRESSING THE SONIC HEDGEHOG SIGNALING PATHWAY" (2015). All Dissertations. 1583. https://tigerprints.clemson.edu/all_dissertations/1583 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. ARSENIC INHIBITS P19 STEM CELL DIFFERENTIATION BY ALTERING MICRORNA EXPRESSION AND REPRESSING THE SONIC HEDGEHOG SIGNALING PATHWAY A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Environmental Toxicology by Jui-Tung Liu December 2015 Accepted by: Dr. Lisa Bain, Committee Chair Dr. William Baldwin Dr. Wen Chen Dr. Charles Rice ABSTRACT Arsenic is a naturally-occurring toxicant that exists in bedrock and can be leached into ground water. Humans can be exposed to arsenic via contaminated drinking water, fruit, rice or crops. Epidemiological studies have shown that arsenic is a developmental toxicant, and in utero exposure reduces IQ scores, verbal learning ability, decreases long term memory, and increases the likelihood of dying from a neurological disorder. Arsenic can also reduce birth weight, weight gain, and muscle function after an in utero exposure.
    [Show full text]
  • Shh Induces Motor Neuron Differentiation in P19 Embryonic Carcinoma Cells
    의의의학학학석석석사사사학학학위위위논논논문문문 Shh induces Motor Neuron differentiation in P19 Embryonic Carcinoma Cells 아아아주주주대대대학학학교교교 대대대학학학원원원 의의의학학학과과과 박박박래래래희희희 Shh induces Motor Neuron Differentiation in P19 Embryonic Carcinoma Cells by Rae Hee Park A Dissertation Submitted to The Graduate School of Ajou University in Partial Fulfillment of the Requirements for the Degree of MASTER OF MEDICAL SCIENCES Supervised by Haeyoung Suh-Kim, Ph.D. Department of Medical Sciences The Graduate School, Ajou University August, 2005 박박박래래래희희희의의의의의의학학학석석석사사사학학학위위위논논논문문문을을을인인인준준준함함함... 심심심사사사위위위원원원장장장 서서서 해해해 영영영 인인인 심심심사사사위위위원원원 이이이 영영영 돈돈돈 인인인 심심심사사사위위위원원원 조조조 은은은 혜혜혜 인인인 아아아주주주대대대학학학교교교 대대대학학학원원원 222000000555년년년666월월월222222일일일 - ABSRACT- Sonic hedgehog induces Motor Neuron Differentiation in P19 Embryonic Carcinoma Cells Sonic hedgehog (Shh) is a member of the hedgehog family of signalling molecules and secreted from two signalling centers, the notochord and the floor plate, where it functions as a morphogen to induce early dorso-ventral patterning of the cenral nervous system (CNS). More recently, multiple actions of Shh during CNS development have been discovered in additional sites, where it specifies the fates of oligodendrocytes and motor neurons as well as proliferation of neural precursors and control of axon outgrowth. To explore the roles of Shh in neuronal differentiation, we utilized embryonal carcinomal P19 cells as an in vitro model system. We overexpressed Shh in P19 cells and investigated it’s effects on proliferation and differentiation of P19 cells., P19/Shh, P19 cells overexpressing Shh, proliferated at higher rates than normal P19 cells even when normal P19 cells stopped growth and underwent differentiation. Ironically, P19/Shh also differentiated into neurons at higher rates than normal P19 cells. Upregulation of both proliferation and neuronal differentiation P19/Shh suggests that Shh may induce neuronal fates from uncommitted P19 cells and concomitantly promote the proliferation of the resulting neuronal precursor cells.
    [Show full text]
  • Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage
    cells Article Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage 1, 2, 1, 3 Xuying Zhang y, Christine V. Mennicke y, Guanxi Xiao y, Robert Beattie , Mansoor A. Haider 2 , Simon Hippenmeyer 3 and H. Troy Ghashghaei 1,* 1 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; [email protected] (X.Z.); [email protected] (G.X.) 2 Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA; [email protected] (C.V.M.); [email protected] (M.A.H.) 3 Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; [email protected] (R.B.); [email protected] (S.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 16 November 2020; Accepted: 7 December 2020; Published: 11 December 2020 Abstract: Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia.
    [Show full text]