Island Translocation of the Northern Quoll Dasyurus Hallucatus As A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Felixer™ Grooming Trap Non-Target Safety Trial: Numbats July 2020
Felixer™ Grooming Trap Non-Target Safety Trial: Numbats July 2020 Brian Chambers, Judy Dunlop, Adrian Wayne Summary Felixer™ cat grooming traps are a novel and potential useful means for controlling feral cats that have proven difficult, or very expensive to control by other methods such as baiting, shooting and trapping. The South West Catchments Council (SWCC) and the Department of Biodiversity, Conservation and Attractions (DBCA) plan to undertake a meso-scale trial of Felixer™ traps in the southern jarrah forest where numbats (Myrmecobius fasciatus) are present. Felixer™ traps have not previously been deployed in areas with numbat populations. We tested the ability of Felixer™ traps to identify numbats as a non-target species by setting the traps in camera only mode in pens with four numbats at Perth Zoo. The Felixer™ traps were triggered 793 times by numbats with all detections classified as non-targets. We conclude that the Felixer™ trap presents no risk to numbats as a non-target species. Acknowledgements We are grateful Peter Mawson, Cathy Lambert, Karen Cavanough, Jessica Morrison and Aimee Moore of Perth Zoo for facilitating access to the numbats for the trial. The trial was approved by the Perth Zoo Animal Ethics Committee (Project No. 2020-4). The Felixer™ traps used in this project were provided by Fortescue Metals Group Pty Ltd and Roy Hill Mining Pty Ltd. This trial was supported by the South West Catchments Council with funding through the Australian Government’s National Landcare Program. ii Felixer™ - Numbat Safety Trial -
Biological Conservation 232 (2019) 187–193
Biological Conservation 232 (2019) 187–193 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon A palaeontological perspective on the proposal to reintroduce Tasmanian devils to mainland Australia to suppress invasive predators T ⁎ Michael C. Westawaya, , Gilbert Priceb, Tony Miscamblec, Jane McDonaldb, Jonathon Crambb, ⁎ Jeremy Ringmad, Rainer Grüna, Darryl Jonesa, Mark Collarde, a Australian Research Centre for Human Evolution, Environmental Futures Research Institute, N13 Environment 2 Building, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia b School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia c School of Social Science, University of Queensland, St. Lucia, Brisbane, Queensland, Australia d College of Tropical Agriculture and Human Resources, University of Hawai‘i at Manoa, 2500 Campus Road, Honolulu, Hawai'i 96822, USA e Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada ARTICLE INFO ABSTRACT Keywords: The diversity of Australia's mammalian fauna has decreased markedly since European colonisation. Species in Australia the small-to-medium body size range have been particularly badly affected. Feral cats and foxes have played a Invasive predator central role in this decline and consequently strategies for reducing their numbers are being evaluated. One such Fossil record strategy is the reintroduction to the mainland of the Tasmanian devil, Sarcophilus harrisii. Here, we provide a Feral cat palaeontological perspective on this proposal. We begin by collating published records of devil remains in Fox Quaternary deposits. These data show that the range of devils once spanned all the main ecological zones in Tasmanian devil Sarcophilus Australia. -
Northern Quoll ©
Species Fact Sheet: Northern quoll © V i e w f i n d e r Nothern quoll Dasyurus hallucatus The northern quoll is a medium-sized carnivorous marsupial that lives in the savannas of northern Australia. It is found from south-eastern Queensland all the way to the northern parts of the Western Australian coast. Populations have declined across much of this range, particularly as a result of the spread of the cane toad. Recent translocations to islands in northern Australia free from feral animals have had some success in increasing populations on islands Conservation status The World Conservation Union (IUCN) Redlist of Threatened Species: Lower risk – near threatened Australian Government - Environment Protection and Biodiversity Conservation Act 1999 : Endangered Did you know? Western Australia. They have been associated with the de - mise of a number of native species. • Although they are marsupials, female northern quolls do not have a pouch. At the start of the Conservation action breeding season the area around the nipples becomes enlarged and partially surrounded by a Communities, scientists and governments are working flap of skin. The young (usually six in a litter) live together to coordinate the research and management here for the first eight to 10 weeks of their lives. effort. The Threatened Species Network, a community- • Almost all male northern quolls die at about one based program of the Australian Government and WWF- year old, not long after mating. Australia, recently provided funding for Traditional Owners to survey Maria Island in the Northern Territory for northern Distribution and habitat quolls. On Groote Eylandt, the most significant island for northern quolls, a TSN Community Grant is providing funds Northern quolls live in a range of habitats but prefer rocky to help quarantine the island from hitch-hiking cane toads areas and eucalypt forests. -
Factsheet: a Threatened Mammal Index for Australia
Science for Saving Species Research findings factsheet Project 3.1 Factsheet: A Threatened Mammal Index for Australia Research in brief How can the index be used? This project is developing a For the first time in Australia, an for threatened plants are currently Threatened Species Index (TSX) for index has been developed that being assembled. Australia which can assist policy- can provide reliable and rigorous These indices will allow Australian makers, conservation managers measures of trends across Australia’s governments, non-government and the public to understand how threatened species, or at least organisations, stakeholders and the some of the population trends a subset of them. In addition to community to better understand across Australia’s threatened communicating overall trends, the and report on which groups of species are changing over time. It indices can be interrogated and the threatened species are in decline by will inform policy and investment data downloaded via a web-app to bringing together monitoring data. decisions, and enable coherent allow trends for different taxonomic It will potentially enable us to better and transparent reporting on groups or regions to be explored relative changes in threatened understand the performance of and compared. So far, the index has species numbers at national, state high-level strategies and the return been populated with data for some and regional levels. Australia’s on investment in threatened species TSX is based on the Living Planet threatened and near-threatened birds recovery, and inform our priorities Index (www.livingplanetindex.org), and mammals, and monitoring data for investment. a method developed by World Wildlife Fund and the Zoological A Threatened Species Index for mammals in Australia Society of London. -
Ba3444 MAMMAL BOOKLET FINAL.Indd
Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue. -
The Collapse of Northern Mammal Populations 2 Australian
australian wildlife matters wildlife conservancy Winter 2010 The collapse of northern mammal populations 2 australian saving australia’s threatened wildlife wildlife Pictograph conservancy Welcome to our Winter 2010 edition of Wildlife Matters. I am writing this editorial from our bushcamp at Pungalina-Seven Emu, in the Gulf of Carpentaria. Our biological survey has just commenced and already some exciting discoveries have been made. the awc mission Overnight our fi eld ecologists captured a Carpentarian Pseudantechinus, one of Australia’s rarest mammals. This is only the 21st time that this species has ever been The mission of Australian Wildlife Conservancy recorded (the 20th record was also on Pungalina – see the Spring 2009 edition of (AWC) is the effective conservation of all Wildlife Matters). We have watched rare Ghost Bats, Australia’s only carnivorous bats, Australian animal species and the habitats in emerging from a maternity cave; a mother Dugong, with her calf, resting in the lower which they live. To achieve this mission, our reaches of the Calvert River; Bandicoots digging around Pungalina’s network of lush, actions are focused on: permanent springs; and graceful Antilopine Wallaroos bounding across Pungalina’s • Establishing a network of sanctuaries tropical savannas. which protect threatened wildlife and Pungalina-Seven Emu is a property of immense conservation signifi cance. Yet it ecosystems: AWC now manages lies at the centre – geographically – of an unfolding ecological drama which surely 21 sanctuaries covering over 2.5 million demands our attention: from Cape York to the Kimberley, Australia’s small mammals hectares (6.2 million acres). are disappearing. Species such as the Golden Bandicoot, the Brush-tailed Rabbit-rat • Implementing practical, on-ground and the Northern Quoll have suffered catastrophic declines, disappearing from large conservation programs to protect areas including places as famous and well resourced as Kakadu National Park. -
Chuditch Dasyurus Geoffroii
Chuditch Dasyurus geoffroii Conservation Status: Vulnerable Identification The chuditch Dasyurus geoffroii, also known as the western quoll, is the largest carnivorous marsupial that occurs in Western Australia. The northern quoll Dasyurus hallucatus is the other quoll that occurs in WA, but its current distribution in the Pilbara and Kimberley does not overlap with the chuditch in the southwest of WA. The chuditch has mostly brown fur with distinctive white spots. It has large rounded ears, a pointed muzzle and a mostly black, brushy tail about three-quarters the length of it head and body. Unlike many other marsupials, chuditch do not have a hopping gait. Head and Body Length: 26-40cm Tail Length: 21-35cm Weight: 1.3kg (male) and 0.9kg (female) Taxonomy Family: Dasyuridae Genus: Dasyurus Species: geoffroii Other Common Names: western quoll The chuditch is closely related to the northern quoll Dasyurus hallucatus, which is found in the Pilbara, Kimberley and across the northern areas of Photos: K. Page/DBCA the Northern Territory and Queensland. Distribution and Habitat Chuditch were previously known from most of Australia, occurring in every Mainland State and Territory. It was relatively abundant until European settlement, when the species underwent a drastic decline and contraction. It went extinct in New South Wales in the 1940s, Victoria in the 1950s and in Queensland between 1880 and 1910. It is now largely restricted to the south-west of Western Australia, with small numbers in the Midwest, Wheatbelt and South Coast Regions. Historically, chuditch inhabited a wide range of habitats, but today it survives mostly in Jarrah Eucalyptus marginata forests and woodlands, mallee shrublands and heathlands. -
Research Priorities for the Northern Quoll (Dasyurus Hallucatus) in the Pilbara Region of Western Australia
CSIRO PUBLISHING Australian Mammalogy Review http://dx.doi.org/10.1071/AM15005 Research priorities for the northern quoll (Dasyurus hallucatus) in the Pilbara region of Western Australia Viki A. Cramer A, Judy Dunlop A, Rob Davis B, Ryan Ellis C, Belinda Barnett D, Annette Cook A, Keith Morris A and Stephen van Leeuwen A,E AScience and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia. BSchool of Natural Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia. CDepartment of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia. DEnvironment Department, BHP Billiton Iron Ore, 125 St Georges Terrace, Perth, WA 6000, Australia. ECorresponding author. Email: [email protected] Abstract. The Pilbara population of the northern quoll (Dasyurus hallucatus) has been seldom studied, and the impacts of threats such as altered fire regimes, total grazing pressure, predation and mining and infrastructure development are not well understood. While the Pilbara was once thought likely to provide refuge for northern quolls from the poisonous cane toad (Rhinella marina), recent modelling suggests that cane toads will invade the region. The environmental approvals process for mining development in the Pilbara has generated considerable offset funds that are to be directed towards research on the northern quoll. In an effort to identify future research priorities for this species in the Pilbara through a collaborative -
Targeted Northern Quoll Survey
Woodie Woodie Mine: Targeted Northern Quoll Survey Prepared for: Consolidated Minerals Limited Prepared by: Western Wildlife 8 Ridgeway Pl Mahogany Creek WA 6072 Ph: 0427 510 934 January 2019 Woodie Woodie Mine: Targeted Northern Quoll 2018 Executive Summary Introduction Woodie Woodie Manganese Mine (Woodie Woodie) operates in the East Pilbara region of Western Australia. Consolidated Minerals Limited (CML) has recently recommenced operations and proposes to mine 18 manganese prospects over the next five years. CML commissioned Western Wildlife to carry out a targeted survey for Northern Quoll (Dasyurus hallucatus) across the mine. This report details the findings of the survey conducted in June 2018. Methods The survey was undertaken in accordance with the Statement of environmental principles, factors and oBjectives (Environmental Protection Authority (EPA) 2016a), Environmental factor guideline – terrestrial fauna (EPA 2016b), Technical guidance – terrestrial fauna surveys (EPA 2016c), the Technical Guide: terrestrial vertebrate fauna surveys for environmental impact assessment (EPA and DEC 2010) and the EPBC Act referral guideline for the endangered northern quoll (Dasyurus hallucatus) (Commonwealth of Australia 2016). The field survey was carried out between the 5th and 14th June 2018. Ten sites of motion- sensitive camera traps were used to target the Northern Quoll. Each site included ten baited cameras set for four nights to give a total of 400 camera trap-nights. The images were analysed to identify individual quolls from their spot patterns, where possible. Northern quoll shelter habitat (rocky outcrops, breakaways or escarpments) were identified from aerial photography and where possible, ground-truthed in the field. Foraging habitat was determined to be all vegetation within 1km of shelter habitat. -
Satellite Detection of Orographic Gravity-Wave Activity in the Winter Subtropical Stratosphere Over Australia and Africa S
https://ntrs.nasa.gov/search.jsp?R=20140011187 2019-08-31T19:50:39+00:00Z GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L21807, doi:10.1029/2012GL053791, 2012 Satellite detection of orographic gravity-wave activity in the winter subtropical stratosphere over Australia and Africa S. D. Eckermann1 and D. L. Wu2 Received 4 September 2012; revised 2 October 2012; accepted 4 October 2012; published 6 November 2012. [1] Orographic gravity-wave (OGW) parameterizations in [3] Conversely, in the southern winter subtropics (25 – models produce waves over subtropical mountain ranges in 40S), satellite sensors detect few deep stratospheric oro- Australia and Africa that propagate into the stratosphere graphic gravity waves (SOGWs), despite the presence of during austral winter and deposit momentum, affecting greater and more significant orography at these latitudes. weather and climate. Satellite sensors have measured strato- While satellite sensors regularly detect SOGWs over the spheric GWs for over a decade, yet find no evidence of these subtropical Andes [Jiang et al., 2002; Wu, 2004], significant waves. So are parameterizations failing here? Here we argue subtropical orography in Africa and mainland Australia that the short wavelengths of subtropical OGWs place them yields no clear SOGW signatures. Why? near or below the detection limits of satellite sensors. To test [4] The simplest explanation is that there are no waves to this hypothesis, we reanalyze nine years of stratospheric observe. On moving equatorward, prevailing mid-latitude radiances from the Atmospheric Infrared Sounder (AIRS) westerlies near the surface and throughout the stratosphere on NASA’s Aqua satellite during austral winter, applying weaken significantly and eventually reverse, reducing new averaging techniques to maximize signal-to-noise and surface forcing and inhibiting SOGW penetration through improve thresholds for OGW detection. -
The Effects of Mining Infrastructure on Northern Quoll Movement and Habitat
The Effects of Mining Infrastructure on Northern quoll Movement and Habitat. Honours Thesis by Melinda Henderson Bachelor of Science (Conservation and Wildlife Biology) 2015 This document is confidential and has been prepared solely for internal use by management and staff of Edith Cowan University. It must not be disclosed to any third party without the consent of the Director, Risk Management& Audit Assurance. Edith Cowan University accepts no responsibility, liability or duty of care to any third party for any observations or conclusions which are stated or implied in this report. Honours Thesis 2015 The Effects of Mining Infrastructure on Northern Quoll Habitat and Movement EDITH COWAN UNIVERSITY Use of Thesis This copy is the property of Edith Cowan University. However the literary rights of the author must also be respected. If any passage from this proposal is quoted or closely paraphrased in a paper or written work prepared by the user, the source of the passage must be acknowledged in the work. If the user desires to publish a paper or written work containing passages copied or closely paraphrased from this proposal, which passages would in total constitute an infringing copy for the purposes of the Copyright Act, he or she must first obtain the written permission of the author to do so. ii Honours Thesis 2015 The Effects of Mining Infrastructure on Northern Quoll Habitat and Movement Abstract The Northern quoll (Dasyurus hallucatus) provides an example of a nationally threatened and declining mammal species. Declines have been catastrophic, extensive and rapid due to predation on the introduced cane toad (Rhinella marina) by the Northern quoll. -
Science and Conservation Division Annual Research Report 2016–17 Acknowledgements
Department of Parks and Wildlife Science and Conservation Division annual research report 2016–17 Acknowledgements This report was prepared by Science and Conservation, Department of Biodiversity, Conservation and Attractions (formerly the Department of Parks and Wildlife). Photo credits listed as ‘DBCA’ throughout this report refer to the Department of Biodiversity, Conservation and Attractions. For more information contact: Executive Director, Science and Conservation Department of Biodiversity, Conservation and Attractions 17 Dick Perry Avenue Kensington Western Australia 6151 Locked Bag 104 Bentley Delivery Centre Western Australia 6983 Telephone (08) 9219 9943 dbca.wa.gov.au The recommended reference for this publication is: Department of Parks and Wildlife, 2017, Science and Conservation Division Annual Research Report 2016–2017, Department of Parks and Wildlife, Perth. Images Front cover: Pilbara landscape. Photo – Steven Dillon/DBCA Inset: Burning tree. Photo - Stefan Doerr/Swansea University; Plant collecting. Photo – Juliet Wege/DBCA; Dibbler Photo – Mark Cowan/DBCA Back cover: Flatback turtle Photo – Liz Grant/DBCA Department of Parks and Wildlife Science and Conservation Division Annual Research Report 2016–2017 Director’s Message Through 2016-17 we continued to provide an effective science service to support the Department of Parks and Wildlife’s corporate goals of wildlife management, parks management, forest management and managed use of natural assets. In supporting these core functions, we delivered best practice science to inform conservation and management of our plants, animals and ecosystems, and to support effective management of our parks and reserves, delivery of our fire program and managed use of our natural resources, as well as generating science stories that inspire and engage people with our natural heritage.