UC San Diego UC San Diego Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Gyre Plastic : Science, Circulation and the Matter of the Great Pacific Garbage Patch Permalink https://escholarship.org/uc/item/21w9h64q Author De Wolff, Kim Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Gyre Plastic: Science, Circulation and the Matter of the Great Pacific Garbage Patch A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Communication by Kim De Wolff Committee in charge: Professor Chandra Mukerji, Chair Professor Joseph Dumit Professor Kelly Gates Professor David Serlin Professor Charles Thorpe 2014 Copyright Kim De Wolff, 2014 All rights reserved. The Dissertation of Kim De Wolff is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2014 iii TABLE OF CONTENTS Signature Page ........................................................................................................... iii Table of Contents ....................................................................................................... iv List of Figures ............................................................................................................ vi Acknowledgements .................................................................................................... ix Vita ............................................................................................................................. xii Abstract of the Dissertation ....................................................................................... xiii Introduction Knowing “Things that Matter” in the North Pacific .................................................. 1 A Global Environmental Problem as Matter of Concern and Care ..................... 5 Circulation as Methodology and Site ................................................................... 8 Words that Matter ................................................................................................ 14 Plastic Oceans of Waste and Wonder .................................................................. 18 Chapter Maps ....................................................................................................... 20 Chapter 1 Pacific Currents: Plastic and Water Circulating with Science ................................... 25 Plastic in Nature and Science ............................................................................... 29 Enter the Gyres .................................................................................................... 38 The Garbage Patch Concept ................................................................................. 44 From Tools to Pollution ....................................................................................... 49 Plastic Marine Debris Science ............................................................................. 55 Conclusion ........................................................................................................... 62 Chapter 2 Trash Island: The Materiality of Things That Aren’t There (But Could Be .............. 65 Elusive Traces: The Stuff of Headlines ............................................................... 70 Dismissive Encounters: Rational Skepticism ...................................................... 81 Corrective Encounters: Reshaping Truth ............................................................. 91 Constructive Encounters: Building on Trash Island ............................................ 102 Myth/Mis-/Missing: The Generative Potential of Material Absences ................. 111 Chapter 3 Witnesses in the Garbage Patch: Intersections of Humans and Plastic at Sea ........... 114 Pacific Crossings .................................................................................................. 118 Becoming Witnesses “On a boat, looking for plastic” ........................................ 122 Corrective Encounters in and with a Garbage Patch ........................................... 131 Plastic Witnesses and Forms of Doubt ................................................................ 141 iv The Vast Continuity of the Sea ............................................................................ 144 Conclusion ........................................................................................................... 146 Chapter 4 Diverging Models of Science and Activism: Plastic Knowledge in Motion ............. 149 Collecting Gyre Samples for Science and Education .......................................... 153 Trajectory 1: Making Knowledge in the Laboratory ........................................... 160 Trajectory 2: Making Knowledge Public through Demonstration ...................... 166 Trajectory 3: Escaped Plastic and Missing Knowledge ....................................... 172 Conclusion ........................................................................................................... 176 Chapter 5 Plastic Species: Tangled Naturecultures in the Plastisphere ...................................... 179 Entanglements in and with Science ..................................................................... 182 Tangles of Waste and Life at Sea ........................................................................ 185 “Plastic versus everything else”: Separation as scientific knowledge ................ 188 “Dangerous Species”: Separation as public knowledge ...................................... 193 The Matter of Belonging ...................................................................................... 201 Conclusion ................................................................................................................. 206 Science, Activism and Matters of Care ................................................................ 208 For Further Research ............................................................................................ 211 How to Live Responsibly with Plastic ................................................................. 213 Plastic is not solid waste ................................................................................ 214 Plastic evades control .................................................................................... 215 Plastic deserves more power, not less ........................................................... 215 References .................................................................................................................. 217 v LIST OF FIGURES Figure 0.1: ……………………………………………………………………….... 1 A floating ‘island’ of plastic objects and an ocean surface sample of ‘plastic soup.’ Figure 0.2: ……………………………………………………………………….... 17 Map of major currents and accumulation zones in the North Pacific Ocean. Source: NOAA. Figure 0.3: ……………………………………………………………………….... 20 Provisional map of the chapter ‘ingredients’ and their respective circulations. Figure 1.1: ……………………………………………………………………….... 42 Munk’s model of gyre currents in the North Pacific. Figure 1.2: ……………………………………………………………………….... 46 Ingraham and Ebbesmeyer’s map locating a ‘garbage patch’ in the Eastern vortex of the North Pacific Subtropical Gyre. Beachcombers’ Alert 2002. Figure 1.3: ……………………………………………………………………….... 48 Nike shoe, rubber duckie, hockey glove and salmon illustrate circulation in the North Pacific Subpolar Gyre from Alaska Fisheries Report on OSCURS, 1997. Figure 1.4: ……………………………………………………………………….... 53 Cover of January 2001 Environmental Science and Technology. Takada’s article, “Plastic Pellet Transport of Toxics in Ocean Environments” is on the cover. Figure 1.5: ……………………………………………………………………….... 54 Plastic pellet sample from Israel. One of hundreds in the IPW archive. Figure 1.6: ……………………………………………………………………….... 61 Wood drifter in the lab and weathered float recovered from Kamilo Beach. Photos by the author. Figure 2.1: ……………………………………………………………………….... 82 Image from “Hyperbole and the North Pacific Garbage Patch” presentation by Angelicque White. Figure 2.2: ……………………………………………………………………….... 91 Captain Moore and Gyre Sample 2002. Figure 2.3: ……………………………………………………………………….... 102 WHIM Architecture’s rendering of Recycle Island in the middle of the North Pacific Subtropical Gyre. vi Figure 3.1: ……………………………………………………………………….... 117 Replica “Crossroads of the Pacific” sign at the Pearl Harbor Visitor Center. Photo by the author. Figure 3.2: ……………………………………………………………………….... 121 Stepping aboard the Sea Dragon in Honolulu. Photo by Laura De Wolff. Figure 3.3: ……………………………………………………………………….... 122 Labeled diagram of the 72 foot racing boat and gyre traveller, the Sea Dragon. From the Pangaea Explorations website. Figure 3.4: …………………………………………………………………………. 130 Holding the wheel in calm seas, the world off-kilter as the boat slants with the wind. Figure 3.5: …………………………………………………………………………. 134 Typical macrodebris: a black fishing float with an attached community of gooseneck barnacles. Figure 3.6: …………………………………………………………………………. 136 The Sea Dragon approaches the heart of the high pressure zone. Photo by the author. Figure 3.7: …………………………………………………………………………. 139 Staging science at sea. Marcus poses for Jin with the manta trawl in the background. Figure 3.8: …………………………………………………………………………. 143 View of the horizon from the boat in the garbage patch. Photo by the author. Figure 3.9: ………………………………………………………………………….
Recommended publications
  • An Assessment Report on Microplastics
    An Assessment Report on Microplastics This document was prepared by B Stevens, North Carolina Coastal Federation Table of Contents What are Microplastics? 2 Where Do Microplastics Come From? 3 Primary Sources 3 Secondary Sources 5 What are the Consequences of Microplastics? 7 Marine Ecosystem Health 7 Water Quality 8 Human Health 8 What Policies/Practices are in Place to Regulate Microplastics? 10 Regional Level 10 Outer Banks, North Carolina 10 Other United States Regions 12 State Level 13 Country Level 14 United States 14 Other Countries 15 International Level 16 Conventions 16 Suggested World Ban 17 International Campaigns 18 What Solutions Already Exist? 22 Washing Machine Additives 22 Faucet Filters 23 Advanced Wastewater Treatment 24 Plastic Alternatives 26 What Should Be Done? 27 Policy Recommendations for North Carolina 27 Campaign Strategy for the North Carolina Coastal Federation 27 References 29 1 What are Microplastics? The category of ‘plastics’ is an umbrella term used to describe synthetic polymers made from either fossil fuels (petroleum) or biomass (cellulose) that come in a variety of compositions and with varying characteristics. These polymers are then mixed with different chemical compounds known as additives to achieve desired properties for the plastic’s intended use (OceanCare, 2015). Plastics as litter in the oceans was first reported in the early 1970s and thus has been accumulating for at least four decades, although when first reported the subject drew little attention and scientific studies focused on entanglements, ‘ghost fishing’, and ingestion (Andrady, 2011). Today, about 60-90% of all marine litter is plastic-based (McCarthy, 2017), with the total amount of plastic waste in the oceans expected to increase as plastic consumption also increases and there remains a lack of adequate reduce, reuse, recycle, and waste management tactics across the globe (GreenFacts, 2013).
    [Show full text]
  • Ocean Currents and the Pacific Garbage Patch
    ocean currents and the Pacific Garbage Patch photo: Scripps Institution of Oceanography The image above shows a net tow sample from the Pacific Garbage Patch. The sample contains small fish and many small pieces of plastic. The Garbage Patch is primarily composed of this small plastic “confetti” suspended throughout the surface water of the North Pacific Gyre, and is not a island of trash as suggested by some media outlets. The region where the trash converges in the center of the North Pacific Gyre, in a region where surface currents are weak and convergent, thus concentrating large amounts of trash in an area estimated to be close to the size of Texas. With this slide I often show a video clip about the Garbage Patch. Although the links may change, here is one from ABC that I’ve used several times: www.youtube.com/watch?v=OFMW8srq0Qk this video is a bit over the top but it gets the point across. There is additional information from Scripps Institution of Oceanography SEAPLEX experiment: http://sio.ucsd.edu/Expeditions/Seaplex/ and several videos on youtube.com by searching the phrase “SEAPLEX” Pacific garbage patch tiny plastic bits • the worlds largest dump? • filled with tiny plastic “confetti” large plastic debris from the garbage patch photo: Scripps Institution of Oceanography little jellyfish photo: Scripps Institution of Oceanography These are some of the things you find in the Garbage Patch. The large pieces of plastic, such as bottles, breakdown into tiny particles. Sometimes animals get caught in large pieces of floating trash: photo: NOAA photo: NOAA photo: Scripps Institution of Oceanography How do plants and animals interact with small small pieces of plastic? fish larvae growing on plastic Trash in the ocean can cause various problems for the organisms that live there.
    [Show full text]
  • Ahead of the Wave
    sciencenewsf o rkids.o rg http://www.sciencenewsforkids.org/2013/02/scientists-are-working-to-predict-and-tame-the-tsunamis-that-can-threaten-some- coastal-communities/ Ahead of the wave By Stephen Ornes / February 13, 2013 Bump a glass and any water inside might slop over the side. Splash in the bathtub and waves slosh. Toss a rock into a pond and ripples move outward in expanding rings. In each case, the water moves in waves. Those waves carry energy. And the more energy that gets added to a watery environment, the more powerf ul the waves may become. Now imagine an undersea earthquake and the tremendous amount of energy it can transf er to the ocean. That is because the movement of the Earth’s crust can shif t huge volumes of water, unleashing a parade of great and powerf ul waves. The water races away at speeds up to 800 kilometers (500 miles) per hour, or as f ast as a jet plane. Eventually those waves reach shallow Wate r p o urs asho re as a tsunami strike s the e ast co ast o f Jap an o n March 11, 2011. Cre d it: Mainichi Shimb un/Re ute rs water. They slow down and swell, sometimes as high as a 10-story building. When the waves eventually crash onto land, they can swamp hundreds of kilometers (miles) of shoreline. They may snap trees like twigs, collapse of f ice buildings and sweep away cars. Among nature’s most powerf ul f orces of destruction, these waves are called tsunamis (tzu NAAM eez).
    [Show full text]
  • Documenting Inuit Knowledge of Coastal Oceanography in Nunatsiavut
    Respecting ontology: Documenting Inuit knowledge of coastal oceanography in Nunatsiavut By Breanna Bishop Submitted in partial fulfillment of the requirements for the degree of Master of Marine Management at Dalhousie University Halifax, Nova Scotia December 2019 © Breanna Bishop, 2019 Table of Contents List of Tables and Figures ............................................................................................................ iv Abstract ............................................................................................................................................ v Acknowledgements ........................................................................................................................ vi Chapter 1: Introduction ............................................................................................................... 1 1.1 Management Problem ...................................................................................................................... 4 1.1.1 Research aim and objectives ........................................................................................................................ 5 Chapter 2: Context ....................................................................................................................... 7 2.1 Oceanographic context for Nunatsiavut ......................................................................................... 7 2.3 Inuit knowledge in Nunatsiavut decision making .........................................................................
    [Show full text]
  • SPH Based Shallow Water Simulation
    Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2011) J. Bender, K. Erleben, and E. Galin (Editors) SPH Based Shallow Water Simulation Barbara Solenthaler1 Peter Bucher1 Nuttapong Chentanez2 Matthias Müller2 Markus Gross1 1ETH Zurich 2NVIDIA PhysX Research Abstract We present an efficient method that uses particles to solve the 2D shallow water equations. These equations describe the dynamics of a body of water represented by a height field. Instead of storing the surface heights using uniform grid cells, we discretize the fluid with 2D SPH particles and compute the height according to the density at each particle location. The particle discretization offers the benefits that it simplifies the use of sparsely filled domains and arbitrary boundary geometry. Our solver can handle terrain slopes and supports two-way coupling of the particle-based height field with rigid objects. An improved surface definition is presented that reduces visible bumps related to the underlying particle representation. It furthermore smoothes areas with separating particles to achieve better rendering results. Both the physics and the rendering are implemented on modern GPUs resulting in interactive performances in all our presented examples. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation and Virtual Reality 1. Introduction in height field methods as well as in full 3D simulations. The grid discretization allows for efficient simulations, but Physically-based simulations have become an important el- handling irregular domain boundaries that are not aligned ement of real-time applications like computer games.
    [Show full text]
  • Litter in Our Waterways – Factsheet
    Litter in our Waterways – Factsheet Marine litter poses a vast and growing threat to the marine and coastal environment. Around 8 million items of litter enter the marine environment every day. 1 An estimated 70 per cent of marine litter ends up on the sea bed, 15 per cent on beaches and the remaining floats to the surface. 1 An estimated 80% of marine debris is from land based sources 20% sea based. These sources fall into four major groups: 1 . Tourism related - food/beverage packaging etc . Waste/stormwater - ex stormwater drains, sewer overflows etc . Fishing related - lines, nets etc . Ship/boat related - waste/garbage deliberately or accidentally dumped overboard It is estimated three times as much rubbish is dumped into the world’s oceans annually as the weight of fish caught. 5 Around 7 billion tonnes of plastic litter enter the ocean every year. 2 It is estimated that over 13, 000 pieces of plastic litter float on every square kilometre of ocean and this figure continues to grow. 8 Plastics make up about 60% of marine debris, with an estimated 100,000 marine mammals and turtles killed by plastic litter every year around the world. 5 Entanglement and ingestion are the primary types of direct damage to wildlife caused by marine litter; it can smother sea beds and it is a source of toxic substances in the marine environment. 1 Available information indicates at least 77 species of marine wildlife found in Australian waters and at least 267 marine species worldwide, are affected by entanglement in or ingestion of marine debris, including 86% of all sea turtles species, 44% of all seabird species and 43% of all marine mammal species.
    [Show full text]
  • Great Pacific Garbage Patch Progression
    Great Pacific Garbage Patch Progression: 1. What is the Great Pacific Garbage Patch? 2. How? Throwback to beginning of plastics. 3. Fracking and Oil to get materials for plastic 4. Consequences of fracking for oil and minerals (show the oil spill that happened Friday) 5. Explain the short lifecycle of plastic, disposable 6. Microbeads 7. Where is AWAY? Landfills, oceans, etc. 8. Doesn’t degrade just smaller pieces, ocean slurry zone. 9. Blocks food for phytoplankton, becomes food for larger fish and whales. 10. Consequences of consumption of plastic chemicals/cancer, birth defects. a. Accumulate in fatty tissue, concentrated in humans, b. PCB and DDT attach onto the plastic when they’re in the ocean together. c. PCB is a lubricant used in electricity conductors and will take thousands of years to break down. Language only lasts for 1 thousand. d. DDT was an agrochemical used 40’s-60’s and then banned, but previous uses ran off of soil into water where it still is. Bugs became resistant too. 11. How to help and get back on track/reduse, reuse, recycle. 12. Designs in progress for this problem 13. Our responsibilities as a designer for the future, design for 10 future generations. Images: http://i2.wp.com/savethewater.org/wp-content/uploads/2014/11/1.jpg http://voices.nationalgeographic.com/files/2016/04/thootpaste.jpg https://upload.wikimedia.org/wikipedia/commons/a/a8/Microplastics_impact_on_biological_com munities.png https://plastictides.files.wordpress.com/2014/05/10035153466_dfdd13d962_z.jpg http://s.newsweek.com/sites/www.newsweek.com/files/styles/embed-lg/public/2014/04/22/2014/
    [Show full text]
  • Plastic Debris Is Polluting the World's Oceans
    Plastic Debris Is Polluting the World's Oceans Pollution, 2011 Richard Grant, "Drowning in Plastic," Telegraph [UK], April 24, 2009. Reproduced by permission. "Every single molecule of plastic that has ever been manufactured is still somewhere in the environment, and some 100 million tons of it are floating in the oceans." Richard Grant reports in the following viewpoint that a patch of garbage made mostly of plastic has accumulated in the Pacific Ocean in an area where major sea currents converge. Those studying the garbage patch argue that the surrounding water contains six times more plastic than plankton, he explains. Unfortunately, Grant affirms, plastic kills marine mammals, birds, and turtles. Moreover, he asserts, because plastic does not biodegrade, those who are concerned about its impact are not quite sure what, if anything, can be done. Nevertheless, he claims, scientists and activists continue to study the patch, looking for answers. Grant, a British writer living in Tucson, Arizona, regularly writes for the Telegraph, a British newspaper. As you read, consider the following questions: 1. According to Grant, what is the basic raw material used to manufacture all the plastic items in our lives? 2. How long does the author claim the marine plastic debris that ends up on the ocean floor will remain there? 3. What, according to the author, is the point of David de Rothschild's voyage on the Plastiki? Way out in the Pacific Ocean, in an area once known as the doldrums, an enormous, accidental monument to modern society has formed. Invisible to satellites, poorly understood by scientists and perhaps twice the size of France, the Great Pacific Garbage Patch is not a solid mass, as is sometimes imagined, but a kind of marine soup whose main ingredient is floating plastic debris.
    [Show full text]
  • Great Pacific Garbage Patch,' in Name of Research 4 August 2009, by Paul Rogers
    Scientists ready to set sail for 'Great Pacific Garbage Patch,' in name of research 4 August 2009, By Paul Rogers Hoping to learn more about one of the most glaring sail for a 30-day voyage from San Francisco. examples of waste and environmental pollution on Earth, a group of scientists will set sail from San The other ship, the 170-foot New Horizon, owned Francisco Tuesday to the "Great Pacific Garbage by the University of California-San Diego, left Patch," a massive vortex of floating plastic trash Southern California on Sunday. It has a crew of estimated by some researchers to be twice the about 20 people, many of them graduate students size of Texas. in marine biology, funded by a $600,000 grant from the University of California. The bobbing debris field, where currents swirl everything from discarded fishing line to plastic Both ships will study the Garbage Patch's size, how bottles into one soupy mess, is located about the plastic affects wildlife, and whether it may be 1,000 miles west of California. possible to clean some of it up. "This is a problem that is kind of out of sight, out of "We are going to try to target the highest plastic mind, but it is having devastating impacts on the areas we see to begin to understand the scope of ocean. I felt we needed to do something about it," the problem," said Miriam Goldstein, chief scientist said Mary Crowley, co-founder of Project Kaisei, a of the Scripps expedition. "The team of graduate non-profit expedition that is partnering on the students will be studying everything from voyage with the Scripps Institution of phytoplankton to zooplankton to small midwater Oceanography in La Jolla, Calif.
    [Show full text]
  • Pressions of Volcanic Rock Outcrops, in Situ Ments Sampled from Kamilo Beach
    Kelly Jazvac Rock Record September 9 – October 15, 2017 FIERMAN presents Rock Record, a solo exhibition by Canadian artist Kelly Jazvac. Rock Record features found materials presented both as art objects and as scientific evidence that plastic pollution has irrevocably changed Earth. The show centers on plastiglomerate – a term collaboratively coined by Jazvac, geologist Patricia Corcoran, and oceanographer Charles Moore in 2013—a new type of stone first described on Kamilo Beach, Hawaii, and later identified on beaches around the globe. Plastiglomerate is a hybrid stone produced when plastic debris melts and fuses with naturally-found sediment such as sand, shells, rock, and wood. For several years, Jazvac has presented these stones in art galleries and museums, emphasizing their poetic, affective, and pedagogical potential. Through their simultaneously natural and artificial forms, each plastiglomerate works to visualize the dense entanglements of human consumption and the environments that adapt and react to our overwhelming presence. However, these stones are not simply, nor primarily, artworks. They are also scientific evidence of how anthropogenic materials are altering Earth’s geology, as explained by Jazvac, Corcoran, and Moore in a co-authored scientific paper published in 2014. They argue that plastiglomerate has the potential to sink into Earth’s strata: due to the increased density of this plastic-sediment fusion, as plastiglomerate becomes buried, so too will the material be preserved for centuries to come. Both Corcoran and Jazvac are founding members of an interdisciplinary research team that considers the ways in which art and culture can contribute to scientific research. This team works collaboratively to make largely unseen aspects of plastic pollution visible.
    [Show full text]
  • Dan-Tipp-Corryvreckan.Pdf
    Corryvreckan The name ‘Corryvreckan’ probably derives from two words ‘Coire’ which in Irish means cauldron and ‘Breccán’ or ‘Breacan’, which is taken to be a proper noun i.e. the name of an individual called Breccán. Although this has also been translated as ‘speckled’ from the adjective brecc ‘spotted, speckled’ etc. combined with the suffix of place – an. There is an Old Irish text known as Cormac’s Glossary written by the then King and Bishop of Cashel, Cormac mac Cuilennáin who died in the year 908. The text is written in the form of Dictionary combined with an encyclopaedia. In it are various attempts at providing explanations, meanings and the significances of various words. At entry 323 it provides probably the fullest description of the Coire Breccáin of the early Irish material, a great whirlpool which is between Ireland and Scotland to the north, in the meeting of various seas, viz., the sea which encompasses Ireland at the north-west, and the sea which encompasses Scotland at the north-east, and the sea to the south between Ireland and Scotland. They whirl around like moulding compasses, each of them taking the place of the other, like the paddles… of a millwheel, until they are sucked into the depths so that the cauldron remains with its mouth wide open; and it would suck even the whole of Ireland into its yawning gullet. It vomits iterum {again & again} that draught up, so that its thunderous eructation and its bursting and its roaring are heard among the clouds, like the steam boiling of a caldron of fire.i This form of description was known in Irish as a Dindshenchas (pronounced dunn- hanakus) tale.
    [Show full text]
  • Trash Travels: the Truth—And the Consequences
    From Our Hands to the Sea, Around the Globe, and Through Time Contents Overview introduction from the president and ceo . 02 a message from philippe cousteau . 03 executive summary . 04 results from the 2009 international coastal cleanup . 06 participating countries map . .07 trash travels: the truth—and the consequences . 16 the pacific garbage patch: myths and realities . 24 international coastal cleanup sponsoring partners . .26 international coastal cleanup volunteer coordinators and sponsors . 30 The Marine Debris Index terminology . 39 methodology and research notes . 40 marine debris breakdown by countries and locations . 41 participation by countries and locations . 49 marine debris breakdown by us states . 50 participation by us states . 53. acknowledgments and photo credits . 55. sources . 56 Ocean Conservancy The International Coastal Cleanup Ocean Conservancy promotes healthy and diverse In partnership with volunteer organizations and ecosystems and opposes practices that threaten individuals across the globe, Ocean Conservancy’s ocean life and human life. Through research, International Coastal Cleanup engages people education, and science-based advocacy, Ocean to remove trash and debris from the world’s Conservancy informs, inspires, and empowers beaches and waterways, to identify the sources people to speak and act on behalf of the ocean. of debris, and to change the behaviors that cause In all its work, Ocean Conservancy strives to be marine debris in the first place. the world’s foremost advocate for the ocean. © OCEAN CONSERVANCY . ALL RIGHTS RESERVED . ISBN: 978-0-615-34820-9 LOOKING TOWARD THE 25TH ANNIVERSARY INTERNATIONAL COASTAL CLEANUP ON SEPTEMBER 25, 2010, Ocean Conservancy 01 is releasing this annual marine debris report spotlighting how trash travels to and throughout the ocean, and the impacts of that debris on the health of people, wildlife, economies, and ocean ecosystems.
    [Show full text]