Pneumoconiosis and Byssinosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occupational Airborne Particulates
Environmental Burden of Disease Series, No. 7 Occupational airborne particulates Assessing the environmental burden of disease at national and local levels Tim Driscoll Kyle Steenland Deborah Imel Nelson James Leigh Series Editors Annette Prüss-Üstün, Diarmid Campbell-Lendrum, Carlos Corvalán, Alistair Woodward World Health Organization Protection of the Human Environment Geneva 2004 WHO Library Cataloguing-in-Publication Data Occupational airborne particulates : assessing the environmental burden of disease at national and local levels / Tim Driscoll … [et al.]. (Environmental burden of disease series / series editors: Annette Prüss-Ustun ... [et al.] ; no. 7) 1.Dust - adverse effects 2.Occupational exposure 3.Asthma - chemically induced 4.Pulmonary disease, Chronic obstructive - chemically induced 5.Pneumoconiosis - etiology 6.Cost of illness 7.Epidemiologic studies 8.Risk assessment - methods 9.Manuals I.Driscoll, Tim. II.Prüss-Üstün, Annette. III.Series. ISBN 92 4 159186 2 (NLM classification: WA 450) ISSN 1728-1652 Suggested Citation Tim Driscoll, et al. Occupational airborne particulates: assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization, 2004. (Environmental Burden of Disease Series, No. 7). © World Health Organization 2004 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). -
Interstitial Lung Diseases in Developing Countries
Rivera-Ortega P and Molina-Molina M. Interstitial Lung Diseases in Developing Countries. Annals of Global Health. 2019; 85(1): 4, 1–14. DOI: https://doi.org/10.5334/aogh.2414 REVIEW Interstitial Lung Diseases in Developing Countries Pilar Rivera-Ortega*,† and Maria Molina-Molina*,† More than 100 different conditions are grouped under the term interstitial lung disease (ILD). A diag- nosis of an ILD primarily relies on a combination of clinical, radiological, and pathological criteria, which should be evaluated by a multidisciplinary team of specialists. Multiple factors, such as environmental and occupational exposures, infections, drugs, radiation, and genetic predisposition have been implicated in the pathogenesis of these conditions. Asbestosis and other pneumoconiosis, hypersensitivity pneumonitis (HP), chronic beryllium disease, and smoking-related ILD are specifically linked to inhalational exposure of environmental agents. The recent Global Burden of Disease Study reported that ILD rank 40th in relation to global years of life lost in 2013, which represents an increase of 86% compared to 1990. Idiopathic pulmonary fibrosis (IPF) is the prototype of fibrotic ILD. A recent study from the United States reported that the incidence and prevalence of IPF are 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively. These data suggests that, in large populated areas such as Brazil, Russia, India, and China (the BRIC region), there may be approximately 2 million people living with IPF. However, studies from South America found much lower rates (0.4–1.2 cases per 100,000 per year). Limited access to high- resolution computed tomography and spirometry or to multidisciplinary teams for accurate diagnosis and optimal treatment are common challenges to the management of ILD in developing countries. -
Pneumoconiosis
Prim Care Respir J 2013; 22(2): 249-252 PERSPECTIVE Pneumoconiosis *Paul Cullinan1, Peter Reid2 1 Consultant Physician, Royal Brompton and Harefield NHS Foundation Trust, London, UK 2 Consultant Physician, Western General Hospital, Edinburgh, UK Introduction Figure 1. Asbestosis; the HRCT scan shows the typical The pneumoconioses are parenchymal lung diseases that arise from picture of subpleural fibrosis (solid arrow); in addition inhalation of (usually) inorganic dusts at work. Some such dusts are there is diffuse, left-sided pleural thickening (broken biologically inert but visible on a chest X-ray or CT scan; thus, while arrow), characteristic too of heavy asbestos exposure they are radiologically alarming they do not give rise to either clinical disease or deficits in pulmonary function. Others – notably asbestos and crystalline silica – are fibrogenic so that the damage they cause is through the fibrosis induced by the inhaled dust rather than the dust itself. Classically these give rise to characteristic radiological patterns and restrictive deficits in lung function with reductions in diffusion capacity; importantly, they may progress long after exposure to the causative mineral has finished. In the UK and similar countries asbestosis is the commonest form of pneumoconiosis but in less developed parts of the world asbestosis is less frequent than silicosis; these two types are discussed in detail below. Other, rarer types of pneumoconiosis include stannosis (from tin fume), siderosis (iron), berylliosis (beryllium), hard metal disease (cobalt) and coal worker’s pneumoconiosis. Asbestosis Clinical scenario How is the diagnosis made? Asbestosis is the ‘pneumoconiosis’ that arises from exposure to A man of 78 reports gradually worsening breathlessness; he has asbestos in the workplace.1 The diagnosis is made when, on the no relevant medical history of note and has never been a regular background of heavy occupational exposure to any type of asbestos, smoker. -
Pneumoconiosis in Coalminers
6I8 POSTGRADUATE MEDICAL JOURNAL December I949 Postgrad Med J: first published as 10.1136/pgmj.25.290.618 on 1 December 1949. Downloaded from IRVINE, L. G., SIMSON, F. W., and STRACHAN, A. S. (1930), NEW YORK STATE DEPARTMENT OF LABOUR (1949), Proc. Intern. Conf. on Silicosis in Johannesburg, I.L.O. Studies Monthly Review, 28, No. 4, April. and Reports, Series F. (Industrial Hygiene), No. I3, p. 259. PERRY, K. M. A. (1948), Proc. Ninth Intern. Cong. of Ind. Med., JONES, W. R. (I933), ,. of Hyg., 33, 307. London (in the press). KETTLE, E. H. (I932), Y. Path. and Bat., 35, 395. KETTLE, E. H. (I934), Ibid., 38, 20o. POLICARD, A. (1947), Proc. Conf. of the Institution of Mining KING, E. J. (I945), M.R.C. Special Report Series, No. 250, p. 73. Engineers and Institution of Mining and Metalurgy, London, KING, E. J. (I947) Occ. Med., 4, 26. P. 24. KING, E. J., WRI6HT, B. M., and RAY, S. C. (I949), Paper read ROGERS, E. (i944), Paper read to the British Tuberculosis Associa- to the Path. Soc., Great Britain, January, 1949. tion. McLAUGHLIN, A. I. G., ROGERS, E., and DUNHAM, K. C. (I949), Brit. 3Y. Ind. Med., 6, I84. SHAVER, C. G. (1948), Radiology, 50, 760. MINERS' PHTHISIS MEDICAL BUREAU OF SOUTH SHAVER, C. G., and RIDDELL, A. R. (I947), J. Id. Hyg. and AFRICA (1946), Report for the Three Years ending Jy 31, Tox., 29, 145. I944 (South African Government Printer). VORWALD, A. J., and CARR, J. W. (1938), Amer. J7. Path., 14,49. PNEUMOCONIOSIS IN COAL MINERS By J. -
Progressive Plasterer's Pneumoconiosis Complicated By
Kurosaki et al. BMC Pulmonary Medicine (2019) 19:6 https://doi.org/10.1186/s12890-018-0776-4 CASEREPORT Open Access Progressive plasterer’s pneumoconiosis complicated by fibrotic interstitial pneumonia: a case report Fumio Kurosaki1,2*, Tamiko Takemura3, Masashi Bando1, Tomonori Kuroki1,2, Toshio Numao2, Hiroshi Moriyama4 and Koichi Hagiwara1 Abstract Background: Although the prevalence of pneumoconiosis has been decreasing due to improvements in working conditions and regular health examinations, occupational hygiene measures are still being established. Plasterers encounter a number of hazardous materials that may be inhaled in the absence of sufficient protection. Case presentation: A 64-year-old man who plastered without any dust protection for more than 40 years was referred to our hospital with suspected interstitial pneumonia. Mixed dust pneumoconiosis and an unusual interstitial pneumonia (UIP) pattern with fibroblastic foci were diagnosed by video-assisted thoracoscopic surgery, and an elemental analysis detected elements included in plaster work materials. Despite the cessation of plaster work and administration of nintedanib, the patient developed advanced respiratory failure. Conclusion: Plasterers are at an increased risk of pneumoconiosis and may have a poor prognosis when complicated by the UIP pattern. Thorough dust protection and careful monitoring are needed. Keywords: Plasterer, Pneumoconiosis, Usual interstitial pneumonia, Elemental analysis Background unusual interstitial pneumonia (UIP) pattern, the cause of With energy transition from coal to oil and nuclear power, which was identified as plaster work by an elemental coal mines completely disappeared by the early first analysis. Therefore, plasterers need to take proper coun- decade of the 2000s in Japan. Furthermore, improvements termeasures for dust prevention and undergo regular in industrial hygiene and vocational education have examinations. -
Misclassification of Occupational Disease in Lung Transplant Recipients
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Heart Manuscript Author Lung Transplant Manuscript Author . Author manuscript; available in PMC 2017 November 13. Published in final edited form as: J Heart Lung Transplant. 2017 May ; 36(5): 588–590. doi:10.1016/j.healun.2017.02.021. Misclassification of occupational disease in lung transplant recipients David J. Blackley, DrPHa, Cara N. Halldin, PhDa, Robert A. Cohen, MDa,b, Kristin J. Cummings, MDa, Eileen Storey, MDa, and A. Scott Laney, PhDa aRespiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA bSchool of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA Data from the United States Organ Procurement and Transplantation Network (OPTN) registry have been analyzed in recent years to assess post–lung transplant (LT) survival in occupational lung disease patients.1–3 Registry data include diagnosis codes with limited specificity; each patient is assigned a diagnosis code at waitlist candidacy, at listing, and at LT, and these codes can differ. The use of both numeric and free-text data can produce incompatible or unlikely diagnosis code pairings (such as a numeric code for idiopathic pulmonary fibrosis with a paired free-text entry of “silicosis”). The resulting misclassification could bias findings related to patient characteristics, post-LT survival comparisons and other measures used to summarize outcomes. Diagnosis codes from OPTN data could be inadequate for case finding and may result in missed occupational lung disease cases. Our objective was to identify and describe adult LT recipients documented as having conditions known to be entirely attributable to occupational exposure, and to calculate the proportion of those patients who were assigned an occupational lung disease diagnosis code at LT. -
European Respiratory Society Classification of the Idiopathic
This copy is for personal use only. To order printed copies, contact [email protected] 1849 CHEST IMAGING American Thoracic Society– European Respiratory Society Classification of the Idiopathic Interstitial Pneumonias: Advances in Knowledge since 20021 Nicola Sverzellati, MD, PhD David A. Lynch, MB In the updated American Thoracic Society–European Respira- David M. Hansell, MD, FRCP, FRCR tory Society classification of the idiopathic interstitial pneumonias Takeshi Johkoh, MD, PhD (IIPs), the major entities have been preserved and grouped into Talmadge E. King, Jr, MD (a) “chronic fibrosing IIPs” (idiopathic pulmonary fibrosis and id- William D. Travis, MD iopathic nonspecific interstitial pneumonia), (b) “smoking-related IIPs” (respiratory bronchiolitis–associated interstitial lung disease Abbreviations: H-E = hematoxylin-eosin, and desquamative interstitial pneumonia), (c) “acute or subacute IIP = idiopathic interstitial pneumonia, IPF = IIPs” (cryptogenic organizing pneumonia and acute interstitial idiopathic pulmonary fibrosis, NSIP = nonspe- cific interstitial pneumonia, RB-ILD = respi- pneumonia), and (d) “rare IIPs” (lymphoid interstitial pneumonia ratory bronchiolitis–associated interstitial lung and idiopathic pleuroparenchymal fibroelastosis). Furthermore, it disease, UIP = usual interstitial pneumonia has been acknowledged that a final diagnosis is not always achiev- RadioGraphics 2015; 35:1849–1872 able, and the category “unclassifiable IIP” has been proposed. The Published online 10.1148/rg.2015140334 diagnostic interpretation of -
A Breathless Builder
case presentations no03.qxd 17/05/2007 15:38 Page 2 CASE PRESENTATION A breathless builder J.J. Lyons1 P.J. Sime1 Case report hand-grinder, a common task known as "tuck- D. Ward2 The patient was a 30-year-old male mason whose pointing" (figure 2), while intermittently using a T. Watson3 work frequently involved cutting and grinding disposable particle mask. After completing this J.L. Abraham4 brick and cement with powered tools. He was an job, he felt well for ~2 months and then gradu- R. Evans5 active smoker (1–1.5 packs per day). He had ally began to develop a nonproductive cough, 6 M. Budev worked in building construction since the age of dyspnoea on exertion and an 11 kg weight loss K. Costas3 W.S. Beckett1 14 yrs, as a labourer then as a mason and had without fever. Serial pulmonary function testing been a mason for the previous 13 years. He showed restriction and a marked reduction in dif- reported frequent exposure to cement and brick fusing capacity. Chest computed tomography 1Division of Pulmonary and dust while removing stone floors with a jackham- (CT) showed bilateral diffuse infiltrates. A purified Critical Care Medicine, 2Dept of mer. From 8–2 months prior to presentation, he protein derivative test was negative. Anesthesiology and Biomedical had been employed repairing exterior brick on Bronchoalveolar lavage fluid was mucoid, and 3 Engineering and Division of three large apartment buildings (figure 1). This culture was negative. A transbronchial biopsy Thoracic/Foregut Surgery, University of Rochester, Rochester, required cutting through brick and mortar with a was nondiagnostic and the post-bronchoscopy 4Dept of Pathology, SUNY Upstate powered, high-speed demolition saw and grind- chest film showed a very small right apical pneu- Medical University, Syracuse, ing mortar from between bricks with a powered mothorax. -
Preventing Postoperative Pulmonary Complications the Role of the Anesthesiologist David O
1467 Ⅵ CLINICAL CONCEPTS AND COMMENTARY Richard B. Weiskopf, M.D., Editor Anesthesiology 2000; 92:1467–72 © 2000 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Preventing Postoperative Pulmonary Complications The Role of the Anesthesiologist David O. Warner, M.D.* THE Confederate General “Stonewall” Jackson was one widely. Nonetheless, it is still clear that PPCs occur of the earliest known victims of a respiratory complica- relatively frequently. In studies of noncardiac surgery, tion after surgery, dying of pneumonia 10 days after an the frequency of PPCs and cardiac complications (which otherwise successful ether anesthetic in 1863. Despite historically have attracted more attention from the anes- subsequent advances in anesthesia and surgical care, thesia community) are comparable.1 For example, in a postoperative pulmonary complications (PPCs) still are a series of adult men undergoing elective abdominal sur- significant problem in modern practice. This commen- gery, PPCs occurred significantly more frequently than tary examines why PPCs occur and how the anesthesi- cardiac complications (estimated rates of 9.6% and 5.7%, ologist can help prevent them. respectively) and were associated with significantly longer hospital stays.1 Significance of Perioperative Pulmonary Causes of Perioperative Pulmonary Complications Complications Determination of the frequency and clinical impact of A basic understanding of mechanism guides rational PPCs in modern practice is hampered by the lack of a practice. Many PPCs, such as atelectasis and pneumonia, uniform definition of a PPC among studies. Nearly all seem to be related to disruption of the normal activity of investigators include in this definition pneumonia (defi- the respiratory muscles, disruption that begins with the nite or suspected), respiratory failure (usually defined as induction of anesthesia and that may continue into the the need for mechanical ventilatory support), and bron- postoperative period. -
Original Article
Artigo Original Broncoscopia no diagnóstico de tuberculose pulmonar em pacientes com baciloscopia de escarro negativa* Bronchoscopy for the diagnosis of pulmonary tuberculosis in patients with negative sputum smear microscopy results Márcia Jacomelli, Priscila Regina Alves Araújo Silva, Ascedio Jose Rodrigues, Sergio Eduardo Demarzo, Márcia Seicento, Viviane Rossi Figueiredo Resumo Objetivo: Avaliar a acurácia diagnóstica da broncoscopia em pacientes com suspeita clínica ou radiológica de tuberculose, com baciloscopia negativa ou incapazes de produzir escarro. Métodos: Estudo transversal prospectivo de 286 pacientes com suspeita clínica/radiológica de tuberculose pulmonar e submetidos à broncoscopia — LBA e biópsia transbrônquica (BTB). As amostras de LBA foram testadas por pesquisas diretas e culturas de BAAR e de fungos, e as de BTB por exame histopatológico. Resultados: Dos 286 pacientes estudados, a broncoscopia contribuiu para o diagnóstico em 225 (79%): tuberculose pulmonar em 127 (44%); inflamações crônicas inespecíficas em 51 (18%); pneumocistose, infecções fúngicas ou nocardiose em 20 (7%); bronquiolite obliterante com pneumonia em organização, alveolites ou pneumoconioses em 14 (5%); neoplasias pulmonares ou metastáticas em 7 (2%); e micobacterioses não tuberculosas em 6 (2%). Para o diagnóstico de tuberculose, o LBA mostrou sensibilidade e especificidade de 60% e 100% respectivamente, havendo um aumento importante da sensibilidade quando associado à biópsia (84%) e à baciloscopia após a broncoscopia (94%). Complicações controláveis decorrentes do procedimento ocorreram em 5,6% dos casos. Conclusões: A broncoscopia representa um método diagnóstico confiável para pacientes com tuberculose pulmonar, apresentando baixos índices de complicações. A associação de biópsia transbrônquica ao lavado broncoalveolar elevou a sensibilidade diagnóstica do método e permitiu o diagnóstico diferencial com outras doenças. -
Cryptogenic Organizing Pneumonia
462 Cryptogenic Organizing Pneumonia Vincent Cottin, M.D., Ph.D. 1 Jean-François Cordier, M.D. 1 1 Hospices Civils de Lyon, Louis Pradel Hospital, National Reference Address for correspondence and reprint requests Vincent Cottin, Centre for Rare Pulmonary Diseases, Competence Centre for M.D., Ph.D., Hôpital Louis Pradel, 28 avenue Doyen Lépine, F-69677 Pulmonary Hypertension, Department of Respiratory Medicine, Lyon Cedex, France (e-mail: [email protected]). University Claude Bernard Lyon I, University of Lyon, Lyon, France Semin Respir Crit Care Med 2012;33:462–475. Abstract Organizing pneumonia (OP) is a pathological pattern defined by the characteristic presence of buds of granulation tissue within the lumen of distal pulmonary airspaces consisting of fibroblasts and myofibroblasts intermixed with loose connective matrix. This pattern is the hallmark of a clinical pathological entity, namely cryptogenic organizing pneumonia (COP) when no cause or etiologic context is found. The process of intraalveolar organization results from a sequence of alveolar injury, alveolar deposition of fibrin, and colonization of fibrin with proliferating fibroblasts. A tremen- dous challenge for research is represented by the analysis of features that differentiate the reversible process of OP from that of fibroblastic foci driving irreversible fibrosis in usual interstitial pneumonia because they may determine the different outcomes of COP and idiopathic pulmonary fibrosis (IPF), respectively. Three main imaging patterns of COP have been described: (1) multiple patchy alveolar opacities (typical pattern), (2) solitary focal nodule or mass (focal pattern), and (3) diffuse infiltrative opacities, although several other uncommon patterns have been reported, especially the reversed halo sign (atoll sign). -
BTS Interstitial Lung Disease Guideline
BTS guideline Thorax: first published as 10.1136/thx.2008.101691 on 24 September 2008. Downloaded from Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society A U Wells,1 N Hirani,2 on behalf of the British Thoracic Society Interstitial Lung Disease Guideline Group, a subgroup of the British Thoracic Society Standards of Care Committee, in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society c Additional information is 1. INTRODUCTION aspects in the process of writing the ILD guidelines published in the online 1.1 An overview of the ILD guideline that merit explanation. appendices (2, 5–11) at http:// 1. These are the first BTS guidelines to have thorax.bmj.com/content/vol63/ Since the publication of the first BTS guidelines for been written in conjunction with other issueSupplV diffuse lung disease nearly 10 years ago,1 the 1 international bodies, namely the Thoracic Royal Brompton Hospital, specialty has seen considerable change. The early Interstitial Lung Disease Unit, Society of Australia and New Zealand and London, UK; 2 Royal Infirmary discussions of the Guideline Group centred upon the Irish Thoracic Society. It is hoped that, by Edinburgh, Edinburgh, UK whether the revised document might consist of the broadening the collaborative base, the quality 1999 document with minor adaptations. However, and credibility of the guidelines has been Correspondence to: it was considered that too much change had taken enhanced and the document will reach a Dr N Hirani, Royal Infirmary Edinburgh, Little France place in the intervening years to justify a simple wider readership.