Mouse Piwi Interactome Identifies Binding Mechanism of Tdrkh Tudor Domain to Arginine Methylated Miwi

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Piwi Interactome Identifies Binding Mechanism of Tdrkh Tudor Domain to Arginine Methylated Miwi Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi Chen Chena, Jing Jina, D. Andrew Jamesa, Melanie A. Adams-Cioabab, Jin Gyoon Parka, Yahong Guob, Enrico Tenagliaa,c, Chao Xub, Gerald Gisha, Jinrong Minb,d, and Tony Pawsona,c,1 aSamuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; bStructural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L6; and cDepartment of Molecular Genetics and dDepartment of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8 Contributed by Tony Pawson, October 8, 2009 (sent for review September 15, 2009) Tudor domains are protein modules that mediate protein–protein spermatogenesis, and small RNA pathways (7–9). However, the interactions, potentially by binding to methylated ligands. A group of binding properties of these germline Tudor proteins are poorly germline specific single and multiTudor domain containing proteins understood. (TDRDs) represented by drosophila Tudor and its mammalian or- Piwi proteins are conserved germline-specific Argonaute fam- thologs Tdrd1, Tdrd4/RNF17, and Tdrd6 play evolutionarily conserved ily members that are associated with Piwi-interacting RNAs roles in germinal granule/nuage formation and germ cell specification (piRNAs), and thereby function in piRNA-mediated posttranscrip- and differentiation. However, their physiological ligands, and the tional silencing (10). Three murine Piwi paralogs, Miwi, Mili, and biochemical and structural basis for ligand recognition, are largely Miwi2, play pivotal roles in germ cell development, transposon unclear. Here, by immunoprecipitation of endogenous murine Piwi silencing and spermatogenesis (11–13). The presence of multiple proteins (Miwi and Mili) and proteomic analysis of complexes related arginine-glycine and arginine-alanine (RG/RA)-rich clusters at the to the piRNA pathway, we show that the TDRD group of Tudor N-termini of these proteins prompted us to question whether these proteins are physiological binding partners of Piwi family proteins. In RG/RA motifs can be methylated in vivo and thereby serve as addition, mass spectrometry indicates that arginine residues in RG docking sites for the binding of various germline Tudor proteins. repeats at the N-termini of Miwi and Mili are methylated in vivo. To test this hypothesis, we performed a comprehensive pro- Notably, we found that Tdrkh/Tdrd2, a novel single Tudor domain teomic analysis of Miwi and Mili complexes in adult male germ cells containing protein identified in the Miwi complex, is expressed in the and determined the methylation status of these Piwi proteins. We cytoplasm of male germ cells and directly associates with Miwi. show that several germline Tudor proteins are physiological binding Mutagenesis studies mapped the Miwi–Tdrkh interaction to the very partners of the Piwi family. In particular, we identify Tdrkh as a N-terminal RG/RA repeats of Miwi and showed that the Tdrkh Tudor novel Miwi-interacting protein that binds Miwi through its single domain is critical for binding. Furthermore, we have solved the crystal Tudor domain, likely via arginine methylation, as suggested by a structure of the Tdrkh Tudor domain, which revealed an aromatic combination of mass spectrometry, mutagenesis, and structural binding pocket and negatively charged binding surface appropriate analysis. for accommodating methylated arginine. Our findings identify a methylation-directed protein interaction mechanism in germ cells Results mediated by germline Tudor domains and methylated Piwi family Tudor Domain-Containing Proteins Are Major Physiological Binding proteins, and suggest a complex mode of regulating the organization Partners of Piwi Family Proteins. To test whether Tudor domain and function of Piwi proteins in piRNA silencing pathways. family proteins comprise the in vivo binding partners of the Piwi proteins, we immunoprecipitated endogenous Miwi and Mili from udor domains, together with Chromo, MBT, PWWP, and lysates of adult testes and purified the complexes by acid elution. To TAgenet-like domains, comprise the ‘‘Tudor Royal Family’’ of obtain a comprehensive survey of the components of the Piwi domains (1). The core structure of this protein domain superfamily complexes, we used a gel-free liquid chromatography coupled is characterized by an antiparallel ␤-barrel-like topology and me- tandem mass spectrometry (LC-MS/MS) approach employing solid diates protein–protein interactions, in some cases by recognizing phase tryptic digestion. This technique allowed us to unambigu- methylated lysine/arginine-containing ligands with a binding site ously identify an extensive list of candidate proteins that specifically composed of aromatic residues (2, 3). Their methylated target associated with Piwi proteins (Fig. 1). Hierarchical clustering of 2 proteins are implicated in diverse biological processes such as independent repeats of Miwi and Mili immunoprecipitations (IP) chromatin remodeling and RNA splicing. For example, the Tudor with their respective IgG control IPs reproducibly revealed distinct domain of Smn binds to methylated arginine-glycine (RG) motifs protein complex profiles for Miwi and Mili (Fig. 1). We found on Sm proteins essential for spliceosome assembly (4), while the proteins that were specifically associated with either Miwi (Fig. 1A, Tudor domains of Jmjd2a bind to methylated lysines in histone blue box and Fig. S2) or Mili (Fig. 1A, red box), and proteins shared H4K20 (5). by both Miwi and Mili complexes (Fig. 1A, cyan box). All of these Drosophila Tudor, the founding member of the Tudor domain proteins were absent from the IgG control IPs, which contain family, is a germ cell-specific protein with multiple Tudor domains nonspecific binding proteins (Fig. S2). In this analysis, we observed and is involved in germ plasm formation and germ cell specification several previously known Piwi-interacting proteins or piRNA path- (6). By analyzing the expression pattern of mammalian genes encoding Tudor domain proteins, we identified a group whose Author contributions: C.C., J.J., and T.P. designed research; C.C., J.J., D.A.J., M.A.A.-C., Y.G., expression is highly enriched in germ cells, which we therefore term E.T., C.X., and G.G. performed research; C.C., J.G.P., and J.M. analyzed data; and C.C. and germline Tudor proteins (Tdrd1, Tdrkh/Tdrd2, RNF17/Tdrd4, T.P. wrote the paper. Tdrd5, Tdrd6, Tdrd7, Stk31/Tdrd8, Tdrd9, Tdrd10, Akap1) (sup- The authors declare no conflict of interest. porting information (SI) Fig. S1). While the physiological functions Data deposition: The atomic coordinates have been deposited in the Protein Data Bank, of germline proteins with a single Tudor domain (Tdrkh, Tdrd5, www.pdb.org (PDB ID code 3fdr). Stk31, and Tdrd9) are largely unknown, mouse knockout studies of 1To whom correspondence should be addressed. E-mail: [email protected]. Tdrd1, Tdrd4, and Tdrd6 have revealed crucial roles for these This article contains supporting information online at www.pnas.org/cgi/content/full/ multiTudor domain proteins in nuage/chromatoid body formation, 0911640106/DCSupplemental. 20336–20341 ͉ PNAS ͉ December 1, 2009 ͉ vol. 106 ͉ no. 48 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0911640106 Downloaded by guest on September 24, 2021 AB Ddx1 Kctd3 Pacsin1 1700020L24Rik Igf2r Golga5 Sucla2 Miwi_IP_2 Mili_IP_2 IgG_IP_(Mili1) IgG_IP_(Mili2) Mili_IP_1 Miwi_IP_1 IgG_IP_(Miwi 1) IgG_IP_(Miwi 2) Trpd52l3 1110012J17Rik 100046745 Kng1 Cep72 1700020L24Rik Ppp2r1a Pacsin2 Cul9 Pacsin2 Ddx1 Ilf3 Psmd2 Sccpdh Tdrd7 OTTMUSG00000023442 8030462N17Rik Stk22s1 Rai14 Rnf213 C330043M08Rik Cep72 Tdrd6 Git1 Stk31 ENSMUSG00000057808 Atp9a ENSMUSG00000076684 Hnrnpl Spata20 8030462N17Rik Stk22s1 Tpr Hdac6 Rai14 Sept2 Rab3ip B230339M05Rik Hsp90ab1 Tjp1 Birc6 Sept9 ENSMUSG00000076684 Ccdc6 Tdrkh Stk31 Kif17 Tjp1 Ccdc6 Golga5 Birc6 Kif17 Pgp Hsp90b1 Ssb Rnf213 Rpl5 1110012J17Rik Acta1 Tpr Rps4y2 Isyna1 Eef1g Hnrnpf Rps9 Hsp90ab1 Lta4h Igf2r Ilf3 Ppp2r1a Akap4 Tdrd6 Amotl1 Atp9a Phldb1 Spata20 Kctd3 Myst3 Pacsin1 Trpd52l3 Sept9 Phldb1 Pkd1l1 Hnrnpl OTTMUSG00000023442 Vps13d Miwi Ybx2 Ahsg ENSMUSG00000076502 C330043M08Rik Fcgr4 Krt5 Psmd2 Hdac6 Rps9 Sept7 Eef1a1 Tdrkh C3 Igh-VX24 Pcca LOC100046359 ENSMUSG00000076718 Hsp90aa1 Igh-6 Dbt Hpx Amotl1 ENSMUSG00000076683 LOC675759 Git1 ENSMUSG00000076939 Igh-VJ558 Fgb Sept2 Hrg Gc Igk-C ENSMUSG00000076709 Pkd1l1 Pzp Ddx4 Aldh1a1 Fgg Sccpdh Mug1 Myst3 Tubb3 Eef1g OTTMUSG00000015054 Eef2 ENSMUSG00000076665 Rpl5 Atp5b ENSMUSP00000112082 Keap1 Ldhc Ttn Dhx9 B230339M05Rik Khsrp Akap4 Trim21 Myo18a Rassf2 Ryr1 Acaa2 Srrm2 Nasp Wdr37 Psmc3 Tns1 Fxr1 ENSMUSG00000057808 Golga3 Nucb1 Ddx5 Tln1 Vim Rps7 1700012A16Rik Sucla2 Ruvbl2 Pbxip1 Hnrnpf Cct8 Hspa8 Tdrd7 Cct2 Dync1h1 Acta1 Rpl23 Cct5 Crybg3 Rab3ip Ddx4 Cct6a Cul9 Trim28 Dnpep Fth1 Hnrnpc Mtap4 Pcbp1 Hspa4l 4932438A13Rik Suclg1 Snrpd2 Tdrd1 Rps13 Rpl28 Rps14 ENSMUSG00000074479 Prdx1 C1qa Cct4 Slc25a31 Tcp1 Hnrnpu ENSMUSG00000076557 Mov10l1 ENSMUSG00000076652 LOC100041230 Blzf1 ENSMUSG00000076692 ENSMUSG00000076691 Rpl8 ENSMUSG00000073028 ENSMUSG00000076649 ENSMUSG00000076695 ENSMUSG00000076736 LOC630322 Fip1l1 ENSMUSG00000076740 Hnrnpm Matr3 Hspa9 Vcp Fga Rps5 Hnrnpa1 Hadha Mocs1 Trf Ywhaz Rps3 Vasp Cct3 Rps20 Rps25 Rpl18 Rps18 Napa Rps26 Mili 1700019E19Rik Zfp219 Fip1l1 Fyttd1 Enthd1 Gramd3 Gbf1 Snrpn Atp5a1 4932438A13Rik Fyttd1 Caprin1 G3bp1 Vasp Nucb1 Tns1 Sorbs2 Blzf1 Cul3 Eml4 Txndc2 Sssca1 Mov10l1 Txndc2 Sssca1 Enthd1 Mocs1 Snrpd2 Crybg3 G3bp1 Pbxip1 Napa 1700019E19Rik Wdhd1
Recommended publications
  • Supplementary Table 3: Genes Only Influenced By
    Supplementary Table 3: Genes only influenced by X10 Illumina ID Gene ID Entrez Gene Name Fold change compared to vehicle 1810058M03RIK -1.104 2210008F06RIK 1.090 2310005E10RIK -1.175 2610016F04RIK 1.081 2610029K11RIK 1.130 381484 Gm5150 predicted gene 5150 -1.230 4833425P12RIK -1.127 4933412E12RIK -1.333 6030458P06RIK -1.131 6430550H21RIK 1.073 6530401D06RIK 1.229 9030607L17RIK -1.122 A330043C08RIK 1.113 A330043L12 1.054 A530092L01RIK -1.069 A630054D14 1.072 A630097D09RIK -1.102 AA409316 FAM83H family with sequence similarity 83, member H 1.142 AAAS AAAS achalasia, adrenocortical insufficiency, alacrimia 1.144 ACADL ACADL acyl-CoA dehydrogenase, long chain -1.135 ACOT1 ACOT1 acyl-CoA thioesterase 1 -1.191 ADAMTSL5 ADAMTSL5 ADAMTS-like 5 1.210 AFG3L2 AFG3L2 AFG3 ATPase family gene 3-like 2 (S. cerevisiae) 1.212 AI256775 RFESD Rieske (Fe-S) domain containing 1.134 Lipo1 (includes AI747699 others) lipase, member O2 -1.083 AKAP8L AKAP8L A kinase (PRKA) anchor protein 8-like -1.263 AKR7A5 -1.225 AMBP AMBP alpha-1-microglobulin/bikunin precursor 1.074 ANAPC2 ANAPC2 anaphase promoting complex subunit 2 -1.134 ANKRD1 ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 1.314 APOA1 APOA1 apolipoprotein A-I -1.086 ARHGAP26 ARHGAP26 Rho GTPase activating protein 26 -1.083 ARL5A ARL5A ADP-ribosylation factor-like 5A -1.212 ARMC3 ARMC3 armadillo repeat containing 3 -1.077 ARPC5 ARPC5 actin related protein 2/3 complex, subunit 5, 16kDa -1.190 activating transcription factor 4 (tax-responsive enhancer element ATF4 ATF4 B67) 1.481 AU014645 NCBP1 nuclear cap
    [Show full text]
  • Structure and Expression Analyses of SVA Elements in Relation to Functional Genes
    pISSN 1598-866X eISSN 2234-0742 Genomics Inform 2013;11(3):142-148 G&I Genomics & Informatics http://dx.doi.org/10.5808/GI.2013.11.3.142 ORIGINAL ARTICLE Structure and Expression Analyses of SVA Elements in Relation to Functional Genes Yun-Jeong Kwon, Yuri Choi, Jungwoo Eo, Yu-Na Noh, Jeong-An Gim, Yi-Deun Jung, Ja-Rang Lee, Heui-Soo Kim* Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous.
    [Show full text]
  • Two DNA Binding Domains of Mga Act in Combination to Suppress Ectopic Activation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.215079; this version posted July 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Two DNA binding domains of Mga act in combination to suppress ectopic activation of meiosis-related genes in mouse embryonic stem cells Kousuke Uranishi1, Masataka Hirasaki2, Yuka Kitamura1, Yosuke Mizuno3, Masazumi Nishimoto1,3, Ayumu Suzuki1*, Akihiko Okuda1* 1Division of Biomedical Sciences, Research Center for Genomic Medicine, 2Department of Clinical Cancer Genomics, International Medical Center, 3Biomedical Research Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama 350-1241, Japan *Corresponding authors Ayumu Suzuki: [email protected] Akihiko Okuda: [email protected] Running title: Roles of two DNA binding domains of Mga in ESCs AUTHOR CONTRIBUTIONS K.U.: performed the experiments, data analysis, and manuscript writing; Y.K., M.H., and Y.M.: performed the experiments and data analysis; M.N.: performed the data analysis, and commented on the manuscript; A.S.: performed the experiments and data analysis, conception and design; A.O.: conception and design, financial support, manuscript writing, and final approval of manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.215079; this version posted July 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Mouse embryonic stem cells (ESCs) have high potential for meiotic entry, like germ cells. Although the physiological meaning of this potential is not known, it is certain that a rigid safeguarding system is required to prevent ectopic onset of meiosis.
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Endocrine System Local Gene Expression
    Copyright 2008 By Nathan G. Salomonis ii Acknowledgments Publication Reprints The text in chapter 2 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics. 2007 Jun 24;8:218. The co-authors listed in this publication co-wrote the manuscript (AP and KH) and provided critical feedback (see detailed contributions at the end of chapter 2). The text in chapter 3 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, Dolganov G, Conklin BR. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12. Epub 2005 Jan 28. The co-authors listed in this publication developed the hierarchical clustering method (KP), co-designed the study (NC, AZ, BC), provided statistical guidance (KV), co- contributed to GenMAPP 2.0 (SD) and performed quantitative mRNA analyses (GD). The text of this dissertation contains a reproduction of a figure from: Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):R74. Epub 2004 Sep 13. The reproduction was taken without permission (chapter 1), figure 1.3. iii Personal Acknowledgments The achievements of this doctoral degree are to a large degree possible due to the contribution, feedback and support of many individuals. To all of you that helped, I am extremely grateful for your support.
    [Show full text]
  • Integrated Analysis of RNA-Binding Proteins in Human Colorectal Cancer Xuehui Fan, Lili Liu, Yue Shi, Fanghan Guo, Haining Wang, Xiuli Zhao, Di Zhong and Guozhong Li*
    Fan et al. World Journal of Surgical Oncology (2020) 18:222 https://doi.org/10.1186/s12957-020-01995-5 RESEARCH Open Access Integrated analysis of RNA-binding proteins in human colorectal cancer Xuehui Fan, Lili Liu, Yue Shi, Fanghan Guo, Haining Wang, Xiuli Zhao, Di Zhong and Guozhong Li* Abstract Background: Although RNA-binding proteins play an essential role in a variety of different tumours, there are still limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal cancer (CRC) patients. Methods: Analysis of CRC transcriptome data collected from the TCGA database was conducted, and RBPs were extracted from CRC. R software was applied to analyse the differentially expressed genes (DEGs) of RBPs. To identify related pathways and perform functional annotation of RBP DEGs, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the database for annotation, visualization and integrated discovery. Protein-protein interactions (PPIs) of these DEGs were analysed based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Based on the Cox regression analysis of the prognostic value of RBPs (from the PPI network) with survival time, the RBPs related to survival were identified, and a prognostic model was constructed. To verify the model, the data stored in the TCGA database were designated as the training set, while the chip data obtained from the GEO database were treated as the test set. Then, both survival analysis and ROC curve verification were conducted.
    [Show full text]
  • MAFB Determines Human Macrophage Anti-Inflammatory
    MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis This information is current as of October 4, 2021. Víctor D. Cuevas, Laura Anta, Rafael Samaniego, Emmanuel Orta-Zavalza, Juan Vladimir de la Rosa, Geneviève Baujat, Ángeles Domínguez-Soto, Paloma Sánchez-Mateos, María M. Escribese, Antonio Castrillo, Valérie Cormier-Daire, Miguel A. Vega and Ángel L. Corbí Downloaded from J Immunol 2017; 198:2070-2081; Prepublished online 16 January 2017; doi: 10.4049/jimmunol.1601667 http://www.jimmunol.org/content/198/5/2070 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/01/15/jimmunol.160166 Material 7.DCSupplemental References This article cites 69 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/198/5/2070.full#ref-list-1 by guest on October 4, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Polycomb Directs Timely Activation of Germline Genes in Spermatogenesis
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Polycomb directs timely activation of germline genes in spermatogenesis So Maezawa,1,2,3,9 Kazuteru Hasegawa,1,2,3,9 Masashi Yukawa,3,4,5 Akihiko Sakashita,1,2,3 Kris G. Alavattam,1,2,3 Paul R. Andreassen,3,6 Miguel Vidal,7 Haruhiko Koseki,8 Artem Barski,3,4,5 and Satoshi H. Namekawa1,2,3 1Division of Reproductive Sciences, 2Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA; 4Division of Allergy and Immunology, 5Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 6Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 7Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, 28040 Madrid, Spain; 8Developmental Genetics Laboratory, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan During spermatogenesis, a large number of germline genes essential for male fertility are coordinately activated. However, it remains unknown how timely activation of this group of germline genes is accomplished. Here we show that Polycomb-repressive complex 1 (PRC1) directs timely activation of germline genes during spermatogenesis. Inactivation of PRC1 in male germ cells results in the gradual loss of a stem cell population and severe differentiation defects, leading to male infertility. In the stem cell population, RNF2, the dominant catalytic subunit of PRC1, activates transcription of Sall4, which codes for a transcription factor essential for subsequent spermatogenic dif- ferentiation.
    [Show full text]