The Reproducibility of Statistical Results in Psychological Research: an Investigation Using Unpublished Raw Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review on Outlier/Anomaly Detection in Time Series Data
A review on outlier/anomaly detection in time series data ANE BLÁZQUEZ-GARCÍA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique. Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software 1 INTRODUCTION Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification, clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011; Ratanamahatana et al. -
Mean, Median and Mode We Use Statistics Such As the Mean, Median and Mode to Obtain Information About a Population from Our Sample Set of Observed Values
INFORMATION AND DATA CLASS-6 SUB-MATHEMATICS The words Data and Information may look similar and many people use these words very frequently, But both have lots of differences between What is Data? Data is a raw and unorganized fact that required to be processed to make it meaningful. Data can be simple at the same time unorganized unless it is organized. Generally, data comprises facts, observations, perceptions numbers, characters, symbols, image, etc. Data is always interpreted, by a human or machine, to derive meaning. So, data is meaningless. Data contains numbers, statements, and characters in a raw form What is Information? Information is a set of data which is processed in a meaningful way according to the given requirement. Information is processed, structured, or presented in a given context to make it meaningful and useful. It is processed data which includes data that possess context, relevance, and purpose. It also involves manipulation of raw data Mean, Median and Mode We use statistics such as the mean, median and mode to obtain information about a population from our sample set of observed values. Mean The mean/Arithmetic mean or average of a set of data values is the sum of all of the data values divided by the number of data values. That is: Example 1 The marks of seven students in a mathematics test with a maximum possible mark of 20 are given below: 15 13 18 16 14 17 12 Find the mean of this set of data values. Solution: So, the mean mark is 15. Symbolically, we can set out the solution as follows: So, the mean mark is 15. -
Reproducibility and Replicability in Science (2019)
THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/25303 SHARE Reproducibility and Replicability in Science (2019) DETAILS 256 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-48616-3 | DOI 10.17226/25303 CONTRIBUTORS GET THIS BOOK Committee on Reproducibility and Replicability in Science; Board on Behavioral, Cognitive, and Sensory Sciences; Committee on National Statistics; Division of Behavioral and Social Sciences and Education; Nuclear and Radiation Studies FIND RELATED TITLES Board; Division on Earth and Life Studies; Board on Mathematical Sciences and Analytics; Committee on Applied and Theoretical Statistics; Division on SUGGESTEDEngineering an CITATIONd Physical Sciences; Board on Research Data and Information; NCaotmiomnaittl eAec oand eSmciiesn coef ,S Ecniegninceeesr, inEgn,g Mineedeircininge,, aanndd MPeudbilcicin Peo 2li0c1y;9 P. Roleicpyr oadnudcibility aGnlodb Rael Aplfifcaairbsi;li tNy ainti oSncaiel Ancea.d Wemaisehsi nogf tSonc,ie DnCce: sT,h Een Ngianteioenrainl gA, caandde Mmeiedsi cPinress. https://doi.org/10.17226/25303. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this -
Accelerating Raw Data Analysis with the ACCORDA Software and Hardware Architecture
Accelerating Raw Data Analysis with the ACCORDA Software and Hardware Architecture Yuanwei Fang Chen Zou Andrew A. Chien CS Department CS Department University of Chicago University of Chicago University of Chicago Argonne National Laboratory [email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION The data science revolution and growing popularity of data Driven by a rapid increase in quantity, type, and number lakes make efficient processing of raw data increasingly impor- of sources of data, many data analytics approaches use the tant. To address this, we propose the ACCelerated Operators data lake model. Incoming data is pooled in large quantity { for Raw Data Analysis (ACCORDA) architecture. By ex- hence the name \lake" { and because of varied origin (e.g., tending the operator interface (subtype with encoding) and purchased from other providers, internal employee data, web employing a uniform runtime worker model, ACCORDA scraped, database dumps, etc.), it varies in size, encoding, integrates data transformation acceleration seamlessly, en- age, quality, etc. Additionally, it often lacks consistency or abling a new class of encoding optimizations and robust any common schema. Analytics applications pull data from high-performance raw data processing. Together, these key the lake as they see fit, digesting and processing it on-demand features preserve the software system architecture, empower- for a current analytics task. The applications of data lakes ing state-of-art heuristic optimizations to drive flexible data are vast, including machine learning, data mining, artificial encoding for performance. ACCORDA derives performance intelligence, ad-hoc query, and data visualization. Fast direct from its software architecture, but depends critically on the processing on raw data is critical for these applications. -
Sources of False Positives and False Negatives in the STATCHECK 1 Algorithm: Reply to Nuijten Et Al
Cite as: Schmidt, T. (2017). Sources of false positives and false negatives in the STATCHECK 1 algorithm: Reply to Nuijten et al. (2016). arXiv:1610.01010v8 [q-bio.NC] Sources of false positives and false negatives in the STATCHECK algorithm: Reply to Nuijten et al. (2016) arXiv:1610.01010v8 [q-bio.NC] Thomas Schmidt University of Kaiserslautern, Germany Experimental Psychology Unit www.sowi.uni-kl.de/psychologie [email protected] Abstract STATCHECK is an R algorithm designed to scan papers automatically for inconsistencies between test statistics and their associated p values (Nuijten et al., 2016). The goal of this comment is to point out an important and well-documented flaw in this busily applied algorithm: It cannot handle corrected p values. As a result, statistical tests applying appropriate corrections to the p value (e.g., for multiple tests, post-hoc tests, violations of assumptions, etc.) are likely to be flagged as reporting inconsistent statistics, whereas papers omitting necessary corrections are certified as correct. The STATCHECK algorithm is thus valid for only a subset of scientific papers, and conclusions about the quality or integrity of statistical reports should never be based solely on this program. STATCHECK is an R algorithm designed to scan papers automatically for inconsistencies between test statistics and their reported p values (Nuijten, Hartgerink, van Assen, Epskamp, and Wicherts, 2016). The algorithm is currently part of these authors’ project to automatically scan thousands of scientific psychology papers and post the results on a website when the program detects some discrepancy, essentially flagging papers for reporting inconsistent test statistics. -
Big Data and Open Data As Sustainability Tools a Working Paper Prepared by the Economic Commission for Latin America and the Caribbean
Big data and open data as sustainability tools A working paper prepared by the Economic Commission for Latin America and the Caribbean Supported by the Project Document Big data and open data as sustainability tools A working paper prepared by the Economic Commission for Latin America and the Caribbean Supported by the Economic Commission for Latin America and the Caribbean (ECLAC) This paper was prepared by Wilson Peres in the framework of a joint effort between the Division of Production, Productivity and Management and the Climate Change Unit of the Sustainable Development and Human Settlements Division of the Economic Commission for Latin America and the Caribbean (ECLAC). Some of the imput for this document was made possible by a contribution from the European Commission through the EUROCLIMA programme. The author is grateful for the comments of Valeria Jordán and Laura Palacios of the Division of Production, Productivity and Management of ECLAC on the first version of this paper. He also thanks the coordinators of the ECLAC-International Development Research Centre (IDRC)-W3C Brazil project on Open Data for Development in Latin America and the Caribbean (see [online] www.od4d.org): Elisa Calza (United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT) PhD Fellow) and Vagner Diniz (manager of the World Wide Web Consortium (W3C) Brazil Office). The European Commission support for the production of this publication does not constitute endorsement of the contents, which reflect the views of the author only, and the Commission cannot be held responsible for any use which may be made of the information obtained herein. -
Changes on CRAN 2014-07-01 to 2014-12-31
NEWS AND NOTES 192 Changes on CRAN 2014-07-01 to 2014-12-31 by Kurt Hornik and Achim Zeileis New packages in CRAN task views Bayesian BayesTree. Cluster fclust, funFEM, funHDDC, pgmm, tclust. Distributions FatTailsR, RTDE, STAR, predfinitepop, statmod. Econometrics LinRegInteractive, MSBVAR, nonnest2, phtt. Environmetrics siplab. Finance GCPM, MSBVAR, OptionPricing, financial, fractal, riskSimul. HighPerformanceComputing GUIProfiler, PGICA, aprof. MachineLearning BayesTree, LogicForest, hdi, mlr, randomForestSRC, stabs, vcrpart. MetaAnalysis MAVIS, ecoreg, ipdmeta, metaplus. NumericalMathematics RootsExtremaInflections, Rserve, SimplicialCubature, fastGHQuad, optR. OfficialStatistics CoImp, RecordLinkage, rworldmap, tmap, vardpoor. Optimization RCEIM, blowtorch, globalOptTests, irace, isotone, lbfgs. Phylogenetics BAMMtools, BoSSA, DiscML, HyPhy, MPSEM, OutbreakTools, PBD, PCPS, PHYLOGR, RADami, RNeXML, Reol, Rphylip, adhoc, betapart, dendextend, ex- pands, expoTree, jaatha, kdetrees, mvMORPH, outbreaker, pastis, pegas, phyloTop, phyloland, rdryad, rphast, strap, surface, taxize. Psychometrics IRTShiny, PP, WrightMap, mirtCAT, pairwise. ReproducibleResearch NMOF. Robust TEEReg, WRS2, robeth, robustDA, robustgam, robustloggamma, robustreg, ror, rorutadis. Spatial PReMiuM. SpatioTemporal BayesianAnimalTracker, TrackReconstruction, fishmove, mkde, wildlifeDI. Survival DStree, ICsurv, IDPSurvival, MIICD, MST, MicSim, PHeval, PReMiuM, aft- gee, bshazard, bujar, coxinterval, gamboostMSM, imputeYn, invGauss, lsmeans, multipleNCC, paf, penMSM, spBayesSurv, -
Have You Seen the Standard Deviation?
Nepalese Journal of Statistics, Vol. 3, 1-10 J. Sarkar & M. Rashid _________________________________________________________________ Have You Seen the Standard Deviation? Jyotirmoy Sarkar 1 and Mamunur Rashid 2* Submitted: 28 August 2018; Accepted: 19 March 2019 Published online: 16 September 2019 DOI: https://doi.org/10.3126/njs.v3i0.25574 ___________________________________________________________________________________________________________________________________ ABSTRACT Background: Sarkar and Rashid (2016a) introduced a geometric way to visualize the mean based on either the empirical cumulative distribution function of raw data, or the cumulative histogram of tabular data. Objective: Here, we extend the geometric method to visualize measures of spread such as the mean deviation, the root mean squared deviation and the standard deviation of similar data. Materials and Methods: We utilized elementary high school geometric method and the graph of a quadratic transformation. Results: We obtain concrete depictions of various measures of spread. Conclusion: We anticipate such visualizations will help readers understand, distinguish and remember these concepts. Keywords: Cumulative histogram, dot plot, empirical cumulative distribution function, histogram, mean, standard deviation. _______________________________________________________________________ Address correspondence to the author: Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA, E-mail: [email protected] 1; -
Education Statistics on the World Wide Web 233
Education Statistics on the World Wide Web 233 Chapter Twenty-two Education Statistics on the World Wide Web: A Core Collection of Resources Scott Walter, Doug Cook, and the Instruction for Educators Committee, Education and Behavioral Sciences Section, ACRL* tatistics are a vital part of the education research milieu. The World Wide Web Shas become an important source of current and historical education statistics. This chapter presents a group of Web sites that are valuable enough to be viewed as a core collection of education statistics resources. A review of the primary Web source for education statistics (the National Center for Education Statistics) is followed by an evaluation of meta-sites for education statistics. The final section includes reviews of specialized, topical Web sites. *This chapter was prepared by the members of the Instruction for Educators Committee, Education and Behavioral Sciences Section, Association of Col- lege and Research Libraries (Doug Cook, chair, 19992001; Sarah Beasley, chair, 2001). Scott Walter (Washington State University) acted as initial au- thor and Doug Cook (Shippensburg University of Pennsylvania) acted as editor. Other members of the committee (in alphabetical order) who acted as authors were: Susan Ariew (Virginia Polytechnic Institute and State Univer- sity), Sarah Beasley (Portland State University), Tobeylynn Birch (Alliant Uni- versity), Linda Geller (Governors State University), Gail Gradowski (Santa Clara University), Gary Lare (University of Cincinnati), Jeneen LaSee- Willemsen (University of Wisconsin, Superior), Lori Mestre (University of Mas- sachusetts, Amherst), and Jennie Ver Steeg (Northern Illinois University). 233 234 Digital Resources and Librarians Selecting Web Sites for a Core Collection Statistics are an essential part of education research at all levels. -
Descriptive Statistics
Statistics: Descriptive Statistics When we are given a large data set, it is necessary to describe the data in some way. The raw data is just too large and meaningless on its own to make sense of. We will sue the following exam scores data throughout: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 45, 67, 87, 21, 43, 98, 28, 23, 28, 75 Summary Statistics We can use the raw data to calculate summary statistics so that we have some idea what the data looks like and how sprad out it is. Max, Min and Range The maximum value of the dataset and the minimum value of the dataset are very simple measures. The range of the data is difference between the maximum and minimum value. Range = Max Value − Min Value = 98 − 21 = 77 Mean, Median and Mode The mean, median and mode are measures of central tendency of the data (i.e. where is the center of the data). Mean (µ) The mean is sum of all values divided by how many values there are N 1 X 45 + 67 + 87 + 21 + 43 + 98 + 28 + 23 + 28 + 75 xi = = 51.5 N i=1 10 Median The median is the middle data point when the dataset is arranged in order from smallest to largest. If there are two middle values then we take the average of the two values. Using the data above check that the median is: 44 Mode The mode is the value in the dataset that appears most. Using the data above check that the mode is: 28 Standard Deviation The standard deviation (σ) measures how spread out the data is. -
EURAMET 1027) Th E C O Unt Mean Is Defined As the Arithmetic Mean of the Particle Diameter in the System
EURAMET Project 1027 Comparison of nanoparticle number concentration and size distribution report of results, V2.0 Jürg Schlatter Federal Office of Metrology METAS, Lindenweg 50, CH-3084 Wabern, Switzerland 22 September 2009 Report_EURAMET1027_V2.0.docx/2009-09-22 1/29 Table of contents Table of contents 2 Description and goal 3 Participants 4 Measurement procedure 5 Data analysis and reporting 8 Results for particle number concentration 12 Particle size distribution measurement 16 Results from the raw size data (method 1) 19 Results for particle size parameters using methods 2 and 3 22 Particle shape and size with an atomic force microscope 22 Geometric Standard Deviation 23 Further work 25 Annex A: Table of Instrumentation 26 Annex B: Protocol for number concentration measurements 27 Annex C: Protocol for size distribution measurements 28 Report_EURAMET1027_V2.0.docx/2009-09-22 2/29 Description and goal The experimental work for EURAMET Project 1027 "Comparison of nanoparticle number concentration and size distribution" was hosted on 27 and 28 November 2008 at the Federal Office of Metrology METAS, Switzerland. The particle number concentration and size distribution in a neutral combustion aerosol were measured with two types of instruments. First, the number concentration was measured with particle counters that do not evaluate the particle size (e.g. CPC = condensation particle counter). Second, the particle size distribution was measured through the combination of a particle size classifier and a particle counter (e.g. SMPS = scanning mobility particle sizer, ELPI = electrical low pressure impactor). Particle size distributions can be characterized by the (total) particle number concentration and the geometric mean size. -
Replicability, Robustness, and Reproducibility in Psychological Science
1 Replicability, Robustness, and Reproducibility in Psychological Science Brian A. Nosek Center for Open Science; University of Virginia Tom E. Hardwicke University of Amsterdam Hannah Moshontz University of Wisconsin-Madison Aurélien Allard University of California, Davis Katherine S. Corker Grand Valley State University Anna Dreber Stockholm School of Economics; University of Innsbruck Fiona Fidler University of Melbourne Joe Hilgard Illinois State University Melissa Kline Struhl Center for Open Science Michèle Nuijten Meta-Research Center; Tilburg University Julia Rohrer Leipzig University Felipe Romero University of Groningen Anne Scheel Eindhoven University of Technology Laura Scherer University of Colorado Denver - Anschutz Medical Campus Felix Schönbrodt Ludwig-Maximilians-Universität München, LMU Open Science Center Simine Vazire University of Melbourne In press at the Annual Review of Psychology Final version Completed: April 6, 2021 Authors’ note: B.A.N. and M.K.S. are employees of the nonprofit Center for Open Science that has a mission to increase openness, integrity, and reproducibility of research. K.S.C. is the unpaid executive officer of the nonprofit Society for the Improvement of Psychological Science. This work was supported by grants to B.A.N. from Arnold Ventures, John Templeton Foundation, Templeton World Charity Foundation, and Templeton Religion Trust. T.E.H. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 841188. We thank Adam Gill for assistance creating Figures 1, 2, and S2. Data, materials, and code are available at https://osf.io/7np92/. B.A.N. Drafted the outline and manuscript sections, collaborated with section leads on conceptualizing and drafting their components, coded replication study outcomes for Figure 1, coded journal policies for Figure 5.