Urban Forest Strategy Strategy: Suggested Tree Species

Total Page:16

File Type:pdf, Size:1020Kb

Urban Forest Strategy Strategy: Suggested Tree Species Page 1 of 5 Urban Forest Strategy Strategy: Suggested Tree Species The City of Armadale’s Urban Forest Strategy strengthens the diverse landscape character of the City encompassing appropriate landscape planning and showcasing the City’s botanic heritage. This summary highlights the relevance of the Urban Each precinct has a preferred tree species list, Forest Strategy to landscaping in the City and how the summarised below, which strengthens the landscape community and developers can distinguish the City as character of the area. The full list, and other a ‘tree change’ destination outside of Perth. The full information, is found in the full Urban Forest Strategy. strategy is available on the City of Armadale website. The Urban Forest Strategy divides the City of Armadale into four precincts (Figure 1): • The Swan Coastal Plain • Armadale Strategic Metropolitan Centre • Kelmscott Town Centre • Hills Precinct Map Figure 1 Urban Forest Strategy Precincts (p53 Urban Forest Strategy) 7 Orchard Avenue Armadale T: (08) 9394 5000 Western Australia 6112 F: (08) 9394 5184 Locked Bag 2 Armadale [email protected] Western Australia 6992 www.armadale.wa.gov.au Page 2 of 5 Urban Forest Strategy Summary: Suggested Tree Species (continued) Swan Coastal Plain Precinct suggested Eucalyptus drummondii tree species Eucalyptus foecunda Below is a list of suggested tree species to comprise the Ficus benjamina ‘Midnight Beauty’ urban forest of the Swan Coastal Plain Precinct (page 99 Urban Forest Strategy). Fraxinus griffithii Fraxinus ‘Raywoodii’ Local Hibiscus tiliaceus Agonis flexuosa Hymenosporum flavum Allocasuarina fraseriana Jacaranda mimosaefolia Banksia grandis Lagerstoemeia indica x L. fauriei Corymbia calophylla Laurus nobilis Eucalyptus gomphocephala Liquidambar styraciflua Eucalyptus lane-poolei Lophostomen confertus Eucalyptus marginata Metrosideros excelsa Eucalyptus todtiana Olea europaea Eucalyptus wandoo Plantanus acerifolia Melaleuca preissiana Prunus x blireana Melaleuca raphiophylla Prunus cerasifera ‘Nigra’ Introduced Pyrus ‘Bradford Pear’ Brachychiton populneus Sapium sebiferum Callistemon viminallis Syzigium smithii Corymbia ficifolia Ulmus parvifolium Corymbia maculata Cupressus sempervirens ‘glauca’ Armadale Strategic Metropolitan Centre Eucalyptus forrestiana Precinct suggested tree species Eucalyptus leucoxylon Below is a list of suggested tree species to comprise Eucalyptus torquata the urban forest of the Armadale Strategic Metropolitan Eucalyptus victrix Centre precinct (page109 Urban Forest Strategy). Jacaranda mimosaefolia Local Melaleuca leucadendra Agonis flexuosa Melaleuca quinquenervia Allocasuarina fraseriana Pyrus calleryana ‘Capital’ Allocasuarina huegeliana Quercus rubra Corymbia calophylla Sapium sebiferum Corymbia haematoxylon Fire wise Eucalyptus accedens Alnus glutinosa Eucalyptus laeliae Betula pendula Eucalyptus lane-poolei Brachychiton acerifolius Eucalyptus marginata Citrus sp Eucalyptus patens Citrus limon ‘Meyer’ Melaleuca preissiana 7 Orchard Avenue Armadale T: (08) 9394 5000 Western Australia 6112 F: (08) 9394 5184 Locked Bag 2 Armadale [email protected] Western Australia 6992 www.armadale.wa.gov.au Page 3 of 5 Urban Forest Strategy Summary: Suggested Tree Species (continued) Introduced Prunus cerasifera ‘Nigra’ Brachychiton populneus Pyrus ‘Bradford Pear’ Callistemon viminallis Corymbia ficifolia Kelmscott Town Centre Precinct Corymbia maculata suggested tree species Cupressus sempervirens ‘glauca’ Below is a list of suggested tree species to comprise the Eucalyptus forrestiana urban forest of the Kelmscott Precinct (page119 Urban Forest Strategy). Eucalyptus leucoxylon Eucalyptus marginata Local Eucalyptus sideroxylon rosea Agonis flexuosa Eucalyptus torquata Allocasuarina huegeliana Jacaranda mimosaefolia Corymbia calophylla Liquidambar styraciflua Corymbia haematoxylon Melaleuca leucadendra Eucalyptus accedens Melaleuca quinquenervia Eucalyptus laeliae Pyrus calleryana ‘Capital’ Eucalyptus lane-poolei Quercus rubra Eucalyptus patens Sapium sebiferum Melaleuca preissiana Tipuana tipu Introduced Ulmus parvifolium Brachychiton populneus Firewise Corymbia ficifolia Betula pendula Corymbia maculata Brachychiton acerifolius Cupressus sempervirens ‘glauca’ Citrus sp Eucalyptus forrestiana Citrus limon ‘Meyer’ Eucalyptus marginata Alnus glutinosa Eucalyptus torquata Eucalyptus argutifolia Liquidambar styraciflua Eucalyptus petrensis Melaleuca leucadendra Fraxinus griffithii Melaleuca quinquenervia Fraxinus ‘Raywoodii’ Pyrus calleryana ‘Capital’ Hibiscus tiliaceus Quercus rubra Lagerstoemeia indica x L. fauriei Sapium sebiferum Laurus nobilis Ulmus parvifolium Liquidambar styraciflua Firewise Lophostomen confertus Alnus glutinosa Michelia figo x Michelia doltsopa Betula pendula Morus alba ‘Pendula’ Brachychiton acerifolius Prunus x blireana Citrus sp 7 Orchard Avenue Armadale T: (08) 9394 5000 Western Australia 6112 F: (08) 9394 5184 Locked Bag 2 Armadale [email protected] Western Australia 6992 www.armadale.wa.gov.au Page 4 of 5 Urban Forest Strategy Summary: Suggested Tree Species (continued) Citrus limon ‘Meyer’ Eucalyptus caesia Eucalyptus argutifolia Eucalyptus foecunda Eucalyptus petrensis Eucalyptus petrensis Ficus benjamina ‘Midnight Beauty’ Ficus benjamina ‘Midnight Beauty’ Fraxinus ‘Raywoodii’ Fraxinus griffithii Lagerstoemeia indica x L. fauriei Fraxinus ‘Raywoodii’ Laurus nobilis Lagerstoemeia indica x L. fauriei Lophostomen confertus Laurus nobilis Michelia figo x Michelia doltsopa Lophostomen confertus Morus alba ‘Pendula’ Michelia figo x Michelia doltsopa Plantanus acerifolia Morus alba ‘Pendula’ Populus x canadensis Plantanus acerifolia Prunus x blireana Populus x canadensis Prunus cerasifera ‘Nigra’ Prunus x blireana Pyrus ‘Bradford Pear’ Prunus cerasifera ‘Nigra’ Pyrus ‘Bradford Pear’ The Hills Precinct suggested plant Brachychiton populneus species Callistemon viminallis Below is a list of suggested tree species to comprise the Corymbia maculata urban forest of The Hills precinct (page131 Urban Forest Cupressus sempervirens ‘glauca’ Strategy). Eucalyptus forrestiana Local Eucalyptus torquata Melaleuca preissiana Jacaranda mimosaefolia Corymbia calophylla Liquidambar styraciflua Corymbia haematoxylon Melaleuca leucadendra Eucalyptus accedens Melaleuca quinquenervia Eucalyptus caesia Pyrus calleryana ‘Capital’ Eucalyptus foecunda Quercus rubra Eucalyptus laeliae Sapium sebiferum Eucalyptus lane-poolei Ulmus parvifolium Eucalyptus patens Firewise Eucalyptus wandoo Allocasuarina huegeliana Introduced Alnus glutinosa Betula pendula Betula pendula Brachychiton acerifolius Brachychiton acerifolius Citrus sp Citrus sp Citrus limon ‘Meyer’ Citrus limon ‘Meyer’ Eucalyptus argutifolia Eucalyptus argutifolia 7 Orchard Avenue Armadale T: (08) 9394 5000 Western Australia 6112 F: (08) 9394 5184 Locked Bag 2 Armadale [email protected] Western Australia 6992 www.armadale.wa.gov.au Page 5 of 5 Urban Forest Strategy Summary: Suggested Tree Species (continued) Eucalyptus caesia Eucalyptus foecunda Eucalyptus petrensis Ficus benjamina ‘Midnight Beauty’ Fraxinus griffithii Fraxinus ‘Raywoodii’ Lagerstoemeia indica x L. fauriei Laurus nobilis Lophostomen confertus Melaleuca preissiana Michelia figo x Michelia doltsopa Morus alba ‘Pendula’ Plantanus acerifolia Populus x canadensis Prunus x blireana Prunus cerasifera ‘Nigra’ Pyrus ‘Bradford Pear’ Further information on these tree species can be found in the Urban Forest Strategy. 7 Orchard Avenue Armadale T: (08) 9394 5000 Western Australia 6112 F: (08) 9394 5184 Locked Bag 2 Armadale [email protected] Western Australia 6992 www.armadale.wa.gov.au.
Recommended publications
  • The Tolerance of Acacia Species to Herbicides
    Seventeenth Australasian Weeds Conference The tolerance of Acacia species to herbicides John H. Moore1 and Geoff Woodall2 1 Department of Agriculture and Food Western Australia, 444 Albany Hwy, Albany, WA 6330, Australia 2 Centre of Excellence in NRM, University of Western Australia, Albany, WA 6330, Australia Corresponding author: [email protected] Summary Herbicides are often required to reduce MATERIALS AND METHODS weed competition when establishing Acacias or are Two trials were conducted at Arthur River, WA needed to kill them when they become environmental (33.06°S, 117.36°E) in a Mediterranean environment weeds. The work presented provides the dose response with an annual rainfall of 450 mm. A ute-mounted curves for herbicides on various species of Acacia logarithmic sprayer with flat fan, 11002 nozzles that seedlings. Flumetsulam, glufosinate, iodosulfuron, delivers a constantly decreasing dose was used to apply imazamox and metosulam were tolerated at 160, 600, the herbicides. The logarithmic sprayer was calibrated 32, 60 and 35.7 g a.i. haí1 respectively or 3–10 times by measuring the change in common salt concentration their normal use rates. Clopyralid and glyphosate were over time. The volume of mix used for each treatment tolerated at the lower end of their normal use rates was measured as a check on calibration. around 60 and 600 g a.i. haí1 respectively. Clopyralid Tree height was determined by measuring the provided good control of Acacia seedlings at rates distance from ground level to the terminal point of above 500 g a.i. haí1 and control with glyphosate was the longest stem.
    [Show full text]
  • Sandalwood Fact Sheet No. 1
    Preparation and Planning for your Sandalwood Plantation 1 Sandalwood Santalum spicatum Planning and site selection The hardiness of the Sandalwood and the ability of Correct site selection is important to the success of considered in conjunction with soil type when your existing farming operations? Generally, the site assessing whether a site is suitable. With climate should not be adjacent to large native bush areas, change winter rain is becoming more unreliable and due to grazing pressure from native herbivores. summer rain becoming common, a native deep Ideally do not plant into low lying frost prone areas. perennial which can take advantage of moisture at Ideally the site should be water gaining but well any time such as Sandalwood is an attractive option. drained. Deep white sands are less suitable. Saline soils, waterlogged or heavy clay soils are generally not suitable although sandalwood can be used to Selection of host species address these issues by strategic planting. It is important to select host species that are suited to both the soil type and climatic conditions of the Soil type site. Generally local provenance species growing on similar soil types are preferred. survival and growth of both host and sandalwood. The preferred site to grow sandalwood in the WA soil type/rainfall areas is provided below, this is not Wheatbelt is a sandy-loam over clay, duplex soil type. an exhaustive list, there will be other species particularly However, sandalwood will also grow on some Acacias which will be suited to your area. Consult loamy-gravels, yellow sands and red sands. Good your local nursery or seed supplier who will be able sandalwood plantations are now being established to provide the correct provenance.
    [Show full text]
  • Drought and Heat Triggers Sudden and Severe Dieback in a Dominant Mediterranean-Type Woodland Species
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Repository Open Journal of Forestry 2012. Vol.2, No.4, 183-186 Published Online October 2012 in SciRes (http://www.SciRP.org/journal/ojf) DOI:10.4236/ojf.2012.24022 Drought and Heat Triggers Sudden and Severe Dieback in a Dominant Mediterranean-Type Woodland Species George Matusick, Katinka X. Ruthrof, Giles St. J. Hardy Centre of Excellence for Climate Change Woodland and Forest Health, Murdoch University, Perth, Australia Email: [email protected] Received June 7th, 2012; revised July 10th, 2012; accepted July 25th, 2012 Ecosystems in Mediterranean climate regions are projected to undergo considerable changes as a result of shifting climate, including from extreme drought and heat events. A severe and sudden dieback event, occurring in regionally significant Eucalyptus gomphocephala woodland in Western Australia, coincided with extreme drought and heat conditions in early 2011. Using a combination of remote sensing and field- based approaches, we characterized the extent and severity of canopy dieback following the event, as well as highlighted potential predisposing site factors. An estimated 500 ha of woodland was severely affected between February and March 2011. Tree foliage rapidly discolored and died over this period. In the af- fected portion of the woodland, approximately 90% of trees greater than 20 cm DBH were impacted, while in the adjacent unaffected woodland 6% showed signs of damage. Tree density in the unaffected area had approximately 4.5 times more trees than the affected woodland. Precipitation drainage patterns are thought to explain the difference between affected and unaffected woodland.
    [Show full text]
  • Genetic Diversity and Adaptation in Eucalyptus Pauciflora
    Genetic diversity and adaptation in Eucalyptus pauciflora Archana Gauli (M.Sc.) A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences, University of Tasmania June, 2014 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Archana Gauli Date Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date Statement regarding published work contained in thesis The publishers of the paper comprising Chapter 2 and Chapter 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date i Statement of publication Chapter 2 has been published as: Gauli A, Vaillancourt RE, Steane DA, Bailey TG, Potts BM (2014) The effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany 61, 622-632. Chapter 3 has been accepted for publication as: Gauli A, Steane DA, Vaillancourt RE, Potts BM (in press) Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp.
    [Show full text]
  • The Pharmacological and Therapeutic Importance of Eucalyptus Species Grown in Iraq
    IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 7, Issue 3 Version.1 (March 2017), PP. 72-91 The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Iraq Abstract:- Eucalyptus species grown in Iraq were included Eucalyptus bicolor (Syn: Eucalyptus largiflorens), Eucalyptus griffithsii, Eucalyptus camaldulensis (Syn: Eucalyptus rostrata) Eucalyptus incrassate, Eucalyptus torquata and Eucalyptus microtheca (Syn: Eucalyptus coolabahs). Eucalypts contained volatile oils which occurred in many parts of the plant, depending on the species, but in the leaves that oils were most plentiful. The main constituent of the volatile oil derived from fresh leaves of Eucalyptus species was 1,8-cineole. The reported content of 1,8-cineole varies for 54-95%. The most common constituents co-occurring with 1,8- cineole were limonene, α-terpineol, monoterpenes, sesquiterpenes, globulol and α , β and ϒ-eudesmol, and aromatic constituents. The pharmacological studies revealed that Eucalypts possessed gastrointestinal, antiinflammatory, analgesic, antidiabetic, antioxidant, anticancer, antimicrobial, antiparasitic, insecticidal, repellent, oral and dental, dermatological, nasal and many other effects. The current review highlights the chemical constituents and pharmacological and therapeutic activities of Eucalyptus species grown in Iraq. Keywords: Eucalyptus species, constituents, pharmacological, therapeutic I. INTRODUCTION: In the last few decades there has been an exponential growth in the field of herbal medicine. It is getting popularized in developing and developed countries owing to its natural origin and lesser side effects. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives [1-50].
    [Show full text]
  • Jacobus Johannes Wentzel
    Is tuart (Eucalyptus gomphocephala) decline detrimental for fauna? Jacobus Johannes Wentzel BSc (Hons) (Wildlife Management) MSc (Wildlife Management) This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2010 i Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. .................................... Jacobus Johannes Wentzel ii ABSTRACT Tree declines, characterised by gradual but widespread loss of vigour and subsequent death of either single or several tree species, are a global phenomenon with landscape-scale consequences. Tree declines can be caused by a wide range of biotic (e.g. pests and pathogens) and abiotic (e.g. salinity and drought) factors. In turn, both biotic and abiotic elements of the environment are modified as a result of tree decline. Despite the massive scale of these changes, the effects of tree decline upon fauna are not clearly understood and are still poorly researched. For example, empirical evidence exists for the effects of tree declines upon fauna only in a handful of bird, small mammal and reptile studies, conducted mainly in North America. The majestic tuart (Eucalyptus gomphocephala) tree once dominated the Swan Coastal Plain in Western Australia (WA). Today, tuart woodlands occur over less than a third of their former range, and the remnant woodlands are heavily affected by decline of unknown cause(s). This study examines the effect of tuart decline upon reptiles, birds and mammals. Research was conducted in twenty-four 1-ha sites in Yalgorup National Park.
    [Show full text]
  • Anniversary Adventure April 2015
    n 9 Pear-fruited Mallee, Eucalyptus pyriformis. A Tour of Trees. 10 Mottlecah, Eucalyptus macrocarpa. Dive into the Western Australian Botanic Garden on an Anniversary Adventure and 11 Rose Mallee, discover its best kept secrets. Eucalyptus rhodantha. 1 Silver Princess, 12 Marri, Explore a special area of the Western Eucalyptus caesia. Australian Botanic Garden with us each Corymbia calophylla. month as we celebrate its 50th anniversary 2 Kingsmill’s Mallee, 13 Western Australian Christmas Tree, in 2015. Eucalyptus kingsmillii. Nuytsia floribunda. In April, we take a winding tour through the 3 Large-fruited Mallee, 14 Dwellingup Mallee, botanic garden to see the most distinctive, Eucalyptus youngiana. Eucalyptus drummondii x rudis rare and special trees scattered throughout its 4 Boab – Gija Jumulu*, (formerly Eucalyptus graniticola). 17 hectares. Adansonia gregorii. 15 Scar Tree – Tuart, 5 Variegated Peppermint, Eucalyptus gomphocephala. Agonis flexuosa. 16 Ramel’s Mallee, 6 Tuart, Eucalyptus rameliana. Eucalyptus gomphocephala. 17 Salmon White Gum, 7 Karri, Eucalyptus lane-poolei. Eucalyptus diversicolor. 18 Red-capped Gum or Illyarrie, 8 Queensland Bottle Tree, Eucalyptus erythrocorys. Brachychiton rupestris. * This Boab, now a permanent resident in Kings Park, was a gift to Western Australia from the Gija people of the East Kimberley. Jumulu is the Gija term for Boab. A Tour of Trees. This month, we take a winding tour through Descend the Acacia Steps to reach the Water Garden the Western Australian Botanic Garden to see where you will find a grove of Dwellingup Mallee the most distinctive, rare and special trees (Eucalyptus drummondii x rudis – formerly Eucalyptus granticola). After discovering a single tree in the wild, scattered throughout its 17 hectares.
    [Show full text]
  • NOTES on CASUARINACEAE II L.A.S. Johnson
    J. Adelaide Bot. Gard. 6(1) 73-87 (1982) NOTES ON CASUARINACEAE II L.A.S. Johnson National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, N.S.W. 2000 Abstract AllocasuarinaL. Johnson, gen. nov., is recognised as separate fromCasuarina sens. strict.and 40 combinations at specific and subspecific level are made under thenew genus.Casuarina grandis and C. L. Johnson oligodonL. Johnson are described together with a new subspecies,C.oligodon ssp. abbreviataL. Johnson, and C.equisetifolia ssp. incana(Benth.) L. Johnson,sial. nov.InGyinnostoma, made for 11 species. combinations are This paper formally establishes thenew genus Allocasuarina, together with new combinations for all those described taxa that will be recognisedin the revision of Casuarinaceae at present being completed. Variousnew taxa will be described therein, but it is necessary to provide descriptions here fortwo species and a subspecies that will be treated in a booklet on uses of Casuarina and alliedgenera being prepared as a result of the International Casuarina Workshopheld in Canberra in August, 1981. The publication of Allocasuarina will permituse of this name in the forthcoming new edition of Flora of South Australia, Part II. Detaileddiscussion of generic and infra- generic relationships and distinctions within the familymust await publication of the revision, as must distributional details, keys, illustrations,nomenclatural discussion, and listing of synonyms and collections. The family comprises four genera: GymnostomaL. Johnson (Johnson 1980), "genus C" to be described (confined to Malesia), CasuarinaAdans. s. str., and Allocasuarina L. Johnson. They are briefly discussed by Johnson and Wilson(1981), and our account of the family in Morley and Toelken (in press)gives a synopsis of the three genera native in Australia.
    [Show full text]
  • (Kwongan) by Allocasuarina Huegeliana in the Western
    Encroachment of sandplain heathland (kwongan) by Allocasuarina huegeliana in the Western Australian wheatbelt: the role of herbivores, fire and other factors Kellie Anne Maher B.Sc./B.Sc.(Hons) This thesis is presented for the degree of Doctor of Philosophy School of Environmental Science Murdoch University August 2007 I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Kellie Maher ii Abstract Kwongan, also known as sandplain heathland, occurs in remnant vegetation throughout the fragmented landscape of the Western Australian wheatbelt. This vegetation community has high levels of species richness and endemism, and is of high conservation value. In many vegetation remnants in the wheatbelt the native tree species Allocasuarina huegeliana (rock sheoak) is expanding out from its normal range and encroaching into kwongan. A. huegeliana may ultimately dominate the kwongan, causing a decline in floristic diversity. Altered disturbance regimes, particularly the absence of fire and reduced or absent browsing mammal herbivores, are likely to be responsible for causing A. huegeliana encroachment. This study used experimental and observational data from patches of kwongan in three Nature Reserves in the central and southern wheatbelt to investigate the role of fire, native mammal activities and interactions between these two factors in shaping A. huegeliana woodland–kwongan community boundaries. Investigations were carried out into the characteristics of encroaching A. huegeliana populations; the environmental factors affecting the extent of encroachment, naturally recruited juveniles, and seedling emergence and establishment; historical and current abundances of native mammals; and the effects of mammal herbivores on seedling establishment during inter-fire and post-fire periods.
    [Show full text]
  • Santalum Spicatum) Oil Production Using Multiple Treatments
    Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2019 Stimulation of Western Australian Sandalwood (Santalum spicatum) oil production using multiple treatments Peta-Anne Smith Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Agriculture Commons Recommended Citation Smith, P. (2019). Stimulation of Western Australian Sandalwood (Santalum spicatum) oil production using multiple treatments. https://ro.ecu.edu.au/theses/2202 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/2202 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Workshop Notes Perth Region Plant Biodiversity Project Jarrah Forest Reference Sites of the Perth Metropolitan Area: the Southe
    Workshop Notes Perth Region Plant Biodiversity Project Jarrah Forest Reference Sites of the Perth Metropolitan Area: The Southern Transect Shaun Molloy February 2008 Lithic complex (reference point MN2) Photograph by Shaun Molloy - 1 - Introduction Bush Forever is a 10 year strategic plan instigated by the Western Australian Government in conjunction with the general community and appropriate Local Government organisations to protect some 51,200 hectares of regionally significant bushland in 287 Bush Forever Sites, representing, where achievable, a target of at least 10 percent of each of the original 26 vegetation complexes of the Swan Coastal Plain portion of the Perth Metropolitan Region. Subsequent to Bush Forever, the Perth Biodiversity Project identified the need to catalogue and describe a series reference sites to facilitate consistency in the assessment of local natural areas and to further enhance the capacity of relevant people to undertake site recording tasks. To this end 40 reference sites were established based on Bush Forever on the Swan Coastal Plain part of the Perth Metropolitan Region (PMR) as part of the Perth Region Plant Biodiversity Project (PRPBP), a collaborative project between the WA Local Government Association’s Perth Biodiversity Project and the Department of Environment and Conservation. The PRPBP recognises a need to provide a fuller appreciation of the diversity of native vegetation found within the PMR. To that end, it was decided to establish reference sites within, or in close proximity to, Darling Plateau part of the PMR. It is proposed that these reference sites are established so as to represent major variations found in the plant communities found within this area thereby complementing reference sites already set up on the Swan Coastal Plain as part of the Perth Biodiversity Project.
    [Show full text]
  • Swamp Sheoak (Casuarina Obesa) Use in Farm Forestry by Tim Emmott, Greening Australia (WA)
    Swamp Sheoak (Casuarina obesa) use in Farm Forestry By Tim Emmott, Greening Australia (WA) Introduction This is an overview of the characteristics, management and use of Casuarina obesa as a farm forestry species. Casuarina obesa is not a new ‘miracle’ species for farm forestry. Rather, it has strengths in particular situations on farms in Western Australia. Casuarina growers, and documented information based on WA and eastern states experiences provide the sources for this publication. You should seek advice from farm forestry advisers before establishing this species for commercial purposes. Species Description Casuarina obesa is commonly known in Western Australia as swamp sheoak, Western Australian swamp oak, swampy oak, salt sheoak, grey sheoak, Kuli and Cooli. Swamp sheoak is a small tree growing to 14 metres, and has a dominant stem for much of its height when growing in closed stands on favourable sites and has a life span of more than 60 years. Generally, swamp sheoak trees have an erect trunk with erect, but sometimes spreading, branches. The bark is thick, fissured and darkish grey in colour. Natural Distribution Swamp sheoak grows widely in southern Western Australia, with limited occurrence in central South Australia, north western Victoria and south western New Open grown swamp sheoak near Northam WA. South Wales. In Western Australia, swamp sheoak naturally occurs in the yellow earthy sands, calcareous and sandy earths, and 275mm to 700mm per annum rainfall zone, growing grey cracking clays. around the margins of salt lakes and along saline creeks and The species is adaptable to most soils from sands to clays rivers throughout the Wheatbelt and Goldfields.
    [Show full text]