Role of Organolithium Aggregates and Mixed Aggregates in Organolithium Mechanisms Hans J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
United States Patent (19) 11 Patent Number: 6,057,352 Brown Et Al
US006057352A United States Patent (19) 11 Patent Number: 6,057,352 Brown et al. (45) Date of Patent: May 2, 2000 54 FUNGICIDAL CYCLIC AMIDES WO 96/17851 6/1996 WIPO ............................... CO7F 7/08 WO 96/26.191 8/1996 WIPO ... ... CO7D 249/12 75 Inventors: Richard James Brown, Newark, Del.: WO 96/36633 11/1996 WIPO ... ... CO7D 405/04 Deborah Ann Frasier, Martinez, Calif.; WO96/36229 11/1996 WIPO ... ... A01N 43/653 Michael Henry Howard, Jr., WO 97/02255 1/1997 WIPO m CO7D 261/12 Rockland; Gerard Michael Koether, OTHER PUBLICATIONS Bear, both of Del. Zvilichovsky, G., J. Heterocyclic Chem., 24,465–470, 1987. 73 Assignee: E. I. du Pont de Nemours and Zvilichovsky, G. et al., J. Heterocyclic Chem., 25, Company, Wilmington, Del. 1307-1310, 1988. Davis, M. et al., Australian J. Chem., 30(8), 1815-1818, 21 Appl. No.: 08/952,380 1977. 22 PCT Filed: May 8, 1996 Primary Examiner Mukund J. Shah 86 PCT No.: PCT/US96/06534 Assistant Examiner Deepak R. Rao S371 Date: Nov. 13, 1997 57 ABSTRACT S 102(e) Date: Nov. 13, 1997 Compounds of Formula (I), 87 PCT Pub. No.: WO96/36616 (I) PCT Pub. Date: Nov. 21, 1996 1.Y. Nz Related U.S. Application Data x - W 63 Continuation-in-part of application No. 08/442,433, May NY 17, 1995, abandoned. A-N 60 Provisional application No. 60/004,183, Sep. 22, 1995. Ye 51) Int. Cl." ...................... C07D 249/12; CO7D 233/30; AO1N 43/74; AO1N 43/56 and their N-oxides and agriculturally Suitable Salts are 52 U.S. -
Chem 314 Preorganic Evaluation
Organic Reaction Guide Beauchamp 1 Chem 316 / Beauchamp Reactions Review Sheet Name SN2 Reactions - special features: biomolecular kinetics Rate = kSN2[RX][Nu ], single step concerted reaction, E2 is a competing reaction o o o o relative order of reactivity: CH3X > 1 RX > 2 RX >> 3 RX (based on steric hinderance, no SN2 at 3 RX) allylic & benzylic RX are very reactive, adjacent pi bonds help stabilize transition state and lower TS energy (Ea) o complete substitution at Cα (3 RX) or Cβ (neopentyl pattern) almost completely inhibits SN2 reactions vinyl & phenyl are very unreactive, bonds are stronger and poor backside approach leaving group ability: OTs = I > Br > Cl in neutral or basic conditions (just like E2, SN1 adn E1), and neutral molecule leaving groups are good from protonated, cationic intermediates in acid conditions, + + + + -OH2 , -ORH , -OR2 , -NR3 , etc. we will consider all anions, ammonia, amines, thiols and sulfides to be strong nucleophiles (favors SN2 and E2 reactions) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and - + + - + - some are mainly bases (t-BuO K , Na H2N , Na H ) polar, aprotic solvents work best for SN2 reactions because nucleophiles are relatively unencombered for electron doantion (dimethyl sulofoxide = DMSO, dimethylformamide = DMF, acetonitrile = AN, acetone, etc.) in our course some electron pair donors are mainly nucleophiles (sulfur, azide, cyanide, carboxylates) and we will consider neutral solvent molecules such as water, alcohols and acids to be weak nucleophiles (favors SN1 and E1) stereoselectivity: 100% inversion of configuration from backside atack regioselectivity: reacts at carbon with leaving group, completely unambiguous chemoselectivity: N/A The following list is designed to emphasize SN2 reactions. -
Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures. -
Pyrophoric Organolithium Reagents
LABORATORY SAFETY FACT SHEET #34 Pyrophoric Organolithium Reagents Procedures1 for Safe Use of Pyrophoric Organolithium Reagents Scope Storage, transfer and use of organolithium reagents including (but not necessarily limited to): Alkyls – • Methyl-d3-lithium, as complex with lithium iodide solution 0.5 M in diethyl ether • Methyllithium lithium bromide complex solution • Methyllithium solution purum, ~5% in diethyl ether (~1.6M) • Methyllithium solution purum, ~1 M in cumene/THF • Methyllithium solution 3.0 M in diethoxymethane • Methyllithium solution 1.6 M in diethyl ether • Ethyllithium solution 0.5 M in benzene/cyclohexane (9:1) • Isopropyllithium solution 0.7 M in pentane • Butyllithium solution 2.0 M in cyclohexane • Butyllithium solution purum, ~2.7 M in heptane • Butyllithium solution 10.0 M in hexanes • Butyllithium solution 2.5 M in hexanes • Butyllithium solution 1.6 M in hexanes • Butyllithium solution 2.0 M in pentane • Butyllithium solution ~1.6 M in hexanes • Butyllithium solution technical, ~2.5 M in toluene • Isobutyllithium solution technical, ~16% in heptane (~1.7 M) • sec-Butyllithium solution 1.4 M in cyclohexane • tert-Butyllithium solution purum, 1.6-3.2 M in heptane • tert-Butyllithium solution 1.7 M in pentane • (Trimethylsilyl)methyllithium solution 1.0 M in pentane • (Trimethylsilyl)methyllithium solution technical, ~1 M in pentane • Hexyllithium solution 2.3 M in hexane • 2-(Ethylhexyl)lithium solution 30-35 wt. % in heptane Alkynyls – • Lithium acetylide, ethylenediamine complex 90% • Lithium acetylide, ethylenediamine complex 25 wt. % slurry in toluene • Lithium (trimethylsilyl)acetylide solution 0.5 M in tetrahydrofuran • Lithium phenylacetylide solution 1.0 M in tetrahydrofuran Aryls – • Phenyllithium solution 1.8 M in di-n-butyl ether Others – • 2-Thienyllithium solution 1.0 M in tetrahydrofuran • Lithium tetramethylcyclopentadienide • Lithium pentamethylcyclopentadienide Hazards In general these materials are pyrophoric; they ignite spontaneously when exposed to air. -
Organolithium Compounds Brochure
Contents I. Introduction . .4 II. Organolithium compounds, properties & structures . .5 III. Reactions of organolithium compounds . .6 a. Metallation . .6 b. Ortho-metallation . .7 c. Nucleophilic addition and substitution . .7 d. Halogen-Metal exchange . .8 e. Transmetallation . .9 f. Anionic Polymerisation . .9 IV. Named organic reactions with organolithium compounds . .10 a. [1,2] and [2,3]-Wittig rearrangement . .10 b. Shapiro Olefination . .10 c. Peterson Olefination . .10 d. Ramberg-Bäcklund-Reaction . .10 e. Parham Cyclization . .11 V. Indicators for the titration of organolithium compounds . .12 VI. Organolithium compounds available at Acros Organics . .14 Dry-solvents . .15 3 I. Introduction Organometallic compounds are amongst the most often used reagents in organic synthesis. The earliest organometallic compound was already discovered in the early 19th cen- tury (“Zeise’s salt”; a zinc-olefin complex was first reported in 1827!) and first exam- ples of synthetic organometallic chemistry are the organozinc-compounds, discovered by Edward Frankland in 1849, the organo-magnesium compounds discovered by Victor Grignard and his teacher Philippe Barbier in 1901 and the organolithium com- pounds, discovered by Wilhelm Schlenk in 1917(1) But only since the 1950th, based on the pioneering work of Georg Wittig and Henry Gilman, organometallic reagents became a routinely used tool in the syn- thetic organic laboratory. A very early but still invaluable application of organometallic reagents is the olefin- polymerisation with the so-called -
Stereoselective Preparation and Stereochemical Behaviour of Organozinc and Organolithium Reagents
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Stereoselective Preparation and Stereochemical Behaviour of Organozinc and Organolithium Reagents Stephanie Seel aus Köln 2012 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Paul Knochel betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, am 05. November 2012 …..…………………………………… Stephanie Seel Dissertation eingereicht am: 06. November 2012 1. Gutachter: Prof. Dr. Paul Knochel 2. Gutachter: Prof. Dr. Konstantin Karaghiosoff Mündliche Prüfung am: 01. Februar 2013 This work was carried out from November 2009 to November 2012 under the guidance of Prof. Dr. Paul Knochel at the Department Chemie und Pharmazie of the Ludwig- Maximilians-Universität, Munich. First, I would like to thank Prof. Dr. Paul Knochel for giving me the opportunity to do my Ph.D. in his group, for his generous support and guidance in the course of my scientific research. I am also very grateful to Prof. Dr. Konstantin Karaghiosoff for agreeing to be the second reviewer of this thesis as well as Prof. Dr. Hendrik Zipse, Prof. Dr. Heinz Langhals, Prof. Dr. Klaus Theodor Wanner and Prof. Dr. Manfred Heuschmann for their interest shown in this manuscript by accepting to be referees. I really would like to thank Tobias Thaler and Andreas Steib for the careful correction of this manuscript. I thank all past and present co-workers I have met in the Knochel group for their kindness and their help. Special thanks to my actual and former lab mates Dr. -
TDC Part I Paper I, Group B Inorganic Chemistry Department of Chemistry L.S COLLEGE MUZAFFARPUR B. R. A. BIHAR UNIVERSITY Dr. Pr
TDC Part I Paper I, Group B Inorganic Chemistry Department of Chemistry L.S COLLEGE MUZAFFARPUR B. R. A. BIHAR UNIVERSITY Dr. Priyanka TOPIC:- ORGANOLITHIUM REAGENT Organolithium reagent Organolithium reagents are organometallic compounds that contain carbon – lithium bonds. They are important reagents in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C-Li bond is highly ionic. This extremely polar nature of the C- Li bond makes organolithium reagents good nucleophiles and strong bases.These reagents are highly reactive, sometimespyrophoric, and should be handled with extreme caution. chemists found that in comparison with Grignard reagents, organolithium reagents can often perform the same reactions with increased rates and higher yields, such as in the case of metalation. Since then, organolithium reagents have surpassed Grignard reagents in usage. Structure: Although simple alkyllithium species are often represented as monomer RLi, they exist as aggregates (oligomers) or polymers. Their structures depend on the nature of organic substituent and the presence of other ligands. Nature of carbon-lithium bond A simplistic look at the large difference in electronegativity suggests the C-Li bond to be highly ionic.[ Certain organolithium compounds possess properties such as solubility in nonpolar solvents that complicate the issue. -
Organometallic Compounds - Reagents with Carbon-Metal Bonds 14.1: Organometallic Nomenclature (Please Read)
Chapter 14: Organometallic Compounds - Reagents with carbon-metal bonds 14.1: Organometallic Nomenclature (please read) H H C C - + H3CH2CH2CH2C-Li (H3C)2Cu Li H MgBr Butyllithium vinylmagnesium bromide Dimethylcopper lithium 14.2: Carbon-Metal Bonds in Organometallic Compounds C X C MgX - + !+ !- ! ! _ C X C MgX C Alkyl halides: Carbanions: nucleophile electrophiles react with electrophile 302 Alkyl halides will react with some metals (M0) in ether or THF to form organometallic reagents 14.3: Preparation of Organolithium Compounds Organolithium Compounds 2 Li(0) R-X R-Li + LiX diethyl ether - + ! ! _ very strong bases C Li C very strong nucleophiles organolithium reagents are most commonly used as very strong bases and in reactions with carbonyl compounds M(0) H O R-X R-M 2 R-H + M-OH 303 1 14.4: Preparation of Organomagnesium Compounds: Grignard Reagents Mg(0) R-X R-MgX (Grignard reagent) THF R-X can be an alkyl, vinyl, or aryl halide (chloride, bromide, or iodide) Solvent: diethyl ether (Et2O) or tetrahydrofuran (THF) H CH C CH CH 3 2 O 2 3 O diethyl ether (Et2O) tetrahydrofuran (THF) Alcoholic solvents and water are incompatible with Grignard reagents and organolithium reagents. Reactivity of the alkyl halide: -I > -Br > -Cl >> -F alkyl halides > vinyl or aryl halides 304 The solvent or alkyl halides can not contain functional groups that are electrophilic or acidic. These are incompatible with the formation of the organomagnesium or organolithium reagent. Grignard reagents will deprotonate alcohols 0 _ Mg + H3O HO Br HO MgBr O H HO H _ BrMg Other incompatible groups: -CO2H, -OH, -SH, NH2, CONHR (amides) Reactive functional groups: aldehydes, ketones, esters, amides, halides, -NO2, -SO2R, nitriles 305 2 14.5: Organolithium and Organomagnesium Compounds as Brønsted Bases - Grignard reagents (M = MgX) and organolithium reagents (M = Li) are very strong bases. -
Acroseal Packaging an Application Guide
AcroSeal Packaging An Application Guide Solvents and Reagents Drier For Longer Introduction Organic reagents have a wide series of applications in drug discovery, agrochemical research, flavours and fragrances, diagnostics and NMR analysis. Reactions often involve the use of air and moisture sensitive solvents, pyrophoric and hazardous reagents. Our AcroSeal™ packaging is an industry leading packaging solution for safe handling of these types of materials. This brochure provides an overview of the key advantages of AcroSeal packaging for your research and outlines some important reactions that could benefit. AcroSeal Packaging Provides... PERFORMANCE The specially designed multi-layer septum ensures a better re-seal thus minimizing atmospheric exposure and protecting the quality of your air and moisture sensitive solvents and reagents. CONVENIENCE A wide range of pre-prepared reagents in solution are available, reducing the risks and saving the time and effort of making your own. SAFETY Our AcroSeal cap system ensures you can transfer the contents of the bottle safely into your reaction vessel minimizing your exposure to potentially hazardous chemicals. Contents Page no. Introduction ........................................................................................................................................................................................................................2 Performance .......................................................................................................................................................................................................................3 -
Organometallic Chemistry
ORGANOMETALLIC CHEMISTRY 1 Organometallic Chemistry (Prelude) What is Organometallic Chemistry? Organometallic chemistry refers to reactions that use the classes of compounds (R-M) that contain a covalent bond between carbon and a metal. They are prepared either by direct reaction of the metal with an organic compound (metallation) or by replacement of a metal in an organometallic compound with another metal (transmetallation). 12:44 PM 2 Organometallic Chemistry Why Go Organometallic Chemistry What is so special about the Organometallic approach to organic synthesis? Classical organic syntheses that proceed by the SN2 pathway require a strong nucleophile attacking an electrophilic site to be effective. Such reactions are of limited scope. For instance, the formation of biaryl systems via the classical substitution reaction is difficult to achieve. 12:44 PM 3 Organometallic Chemistry Applications Organometallic chemistry offers a way out of this dilemma. Through special organometallic reactions, a variety of carbon-carbon bonds can be formed and even biaryl systems can be readily synthesized. This possibility has expanded the scope of their use in organic synthesis since bonds that were hitherto difficult to form through the classical syntheses can almost now be routinely formed. Organometallic chemistry can make possible the synthesis of 12:44 PM pharmacologically relevant natural products containing biaryl units. 4 Organomagnesium or Grignard Reagents R-Mg-X The use of organometallic reagents in organic synthesis began around 1899 when Victor Grignard discovered that alkyl halides reacted with magnesium metal in diethylether to give homogenous solutions. The Grignard reagents proved to be very reactive carbanion nucelophiles and strong bases capable of abstracting highly acidic protons attached to heteroatoms such as O, N and S, and have remained very useful synthetic reagents ever since. -
Mechanism of Reaction of Carbon Monoxide with Phenyllithium'
lReprintedfrom the Journalof the AmericanChemical Society, 95,8118 (1973).] Copyright 1973by the American Chemical Societyand reprinted by permissionof the copyright owner. Mechanism of Reaction of Carbon Monoxide with Phenyllithium' Larry S. Trzupek, Terry L. Newirth,2 Edward G. Kelly, Norma Ethyl Sbarbati,sand George M. Whitesides* Contribution from the Department of Chemistry, MassachusettsInstitute of Technology,Cambridge, Massachusetts 02139. ReceiuedJuly 14, 1973 Abstract: The product mixtures obtained by reaction between phenyllithium and carbon monoxide in diethyl ether, followed by hydrolysis, include benzophenone (1). a,a-diphenylacetophenone(2), benzil (3), a,a-diphenyl- a-hydroxyacetophenone (4), benzpinacot (5), a-hydroxyacetophenone (6), 1,3,3-triphenylpropane-1,2-dione(7), 1,3,3-triphenylpropan-1-one-2,3-diol(8). and benzhydrol (9). Compounds 1, 2, 6,7, and 8 are produced in signifi- cant yields i 3,4,5, and 9 are produced in trace quantities. Spectroscopicstudies establish dilithium benzophenone dianion (18) as the first long-lived intermediate formed in this reaction; qualitative correlations betweenthe basicity of a number of organolithium reagentsand their reactivity toward carbon monoxide suggests,but does not prove, that benzoyllithium is a precursor of 18. Labeling experiments indicate that the products ultimately isolated following hydrolysis of the reaction mixture are derived from at least two pathways which compete for the initially formed 18. One involves combination of l8 with 1 equiv of phenyllithium and 1 equiv of carbon monoxide, followed by elimination of I equiv of lithium oxide. yielding 17, the lithium enolateof 2; a secondinvolves com- bination of 18 with 1 equiv of phenyllithium and 2 equiv of carbon monoxide.