A WORLD of OPPORTUNITY Greening Energy in China and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

A WORLD of OPPORTUNITY Greening Energy in China and Beyond SUMMER 2016 VOL. 9 NO. 1 A WORLD OF OPPORTUNITY Greening Energy in China and Beyond HELPING CHINA INNOVATE NEW ENERGY SOLUTIONS TAKING CLEAN ENERGY TO O Y M UN ARBON DEVELOPING NATIONS K T C C A I O N R PLUS: AMORY’S ANGLE, RMI’S I W N E A M INNOVATION CENTER, AND MORE STIT U T R R O O TABLE OF CONTENTS SUMMER 2016 /VOL. 9 NO. 1 GOING GLOBAL GOING GLOBAL CLEARING THE AIR IN CHINA AFFORDABLE, CLEAN ELECTRICITY FOR ALL Rocky Mountain Institute works with China to peak carbon emissions early and low, and to follow a clean energy pathway Rocky Mountain Institute’s work in sub-Saharan Africa and the Caribbean improves people’s well-being 14 for its large and growing economy 22 Table of Contents Table 1 Summer 2016 COLUMNS & DEPARTMENTS CEO LETTER MY RMI WALK THE WALK GLOBAL OPPORTUNITY: EXPANDING RECIPE FOR LASTING CHANGE: JOHN 33 YEARS OF IMPACT: LONGTIME Our Printing and Paper OUR IMPACT IN CHINA, AFRICA, THE “MAC” MCQUOWN ON WHAT MAKES STAFFER MICHAEL KINSLEY RETIRES. This issue of Solutions Journal is printed on elemental 02 HIS INFLUENCE CARRIES ON chlorine-free paper. Specifically, it is #2 FSC-certified CARIBBEAN, AND BEYOND 10 RMI TICK 28 CPC Matte Book and FSC-certified CPC Matter Cover, Sappi Papers in Minnesota, sourced from SFI-certified pulp. Using certified paper products promotes environmentally appropriate and economically viable AMORY’S ANGLE QUESTION & ANSWER INNOVATION BEACON management of the world’s forests. SOFT ENERGY PATHS: LESSONS OF GLOBAL PERSPECTIVE: MARIA VAN RMI’S INNOVATION CENTER: 5 REASONS THE FIRST 40 YEARS DER HOEVEN ON ENERGY SECURITY, IT’S THE OFFICE OF THE FUTURE 04 12 ENERGY ACCESS, AND COLLABORATION 30 Staff Editorial Director – Cindie Baker Writer/Editor – Laurie Guevara-Stone Writer/Editor – David Labrador RMI-CWR IN BRIEF GOING GLOBAL : cover iStock.com; left, iStock.com; right, courtesy Off-Grid:Electric left, iStock.com; iStock.com; cover : Art Director – Romy Purshouse NEWS FROM AROUND THE A PARTNER’S PERSPECTIVE: Lead Designer – Marijke Jongbloed 09 INSTITUTE 20 MR. DAI YANDE PHOTOS Designer – Alexandria Kleidon CEO LETTER GLOBAL OPPORTUNITY Expanding Our Impact in China, Africa, the Caribbean, and Beyond By Jules Kortenhorst ust this past May, scientists predicted seem daunting, there is much reason for opti­ that at two carbon dioxide measuring mism. In the past year, President Obama and stations in distant parts of the world—in China’s President Xi Jinping reaffirmed their JAustralia and Hawaii—the levels will not dip deter mination to move ahead decisively to imple­ below 400 ppm again. The effects of climate ment domestic climate policies, to strengthen change are visible everywhere, perhaps nowhere bilateral coordina tion and cooperation, and to more so than on islands, greatly impacted by promote the transition to low­carbon and climate­ rising sea levels, increased storm intensity, and resilient economies. And in Paris, delegates from GLOBAL REACH These and other stories within these pages show There is plenty of high energy costs. China, now the world’s largest nearly 200 countries approved a historic agree­ In this issue of Solutions Journal, you will read about that a clean energy future is within our grasp. reason for optimism emitter of green house gases, is facing debilitating ment to address climate change. our work with the Chinese government and But we need to act faster to reach the targets set about addressing The Mauna Loa smog in many of its urban centers. And as influential partners to deliver an economically in Paris, and keep global temperature rise the world’s energy Observatory, in emerging economies around the world continue to Yet emerging economies and developing compelling alternative development path for the well below 2 degrees Celsius. Through the problems for the Hawaii, is the grow, they are expected to become major sources countries need our help to translate their Paris country, through our Reinventing Fire: China international projects described in these pages— next generation. premier CO2 of air pollution and greenhouse gas emissions. commitments into implementation plans. That is program. You will discover how the Alliance of along with our work decreasing emissions of the monitoring station why Rocky Mountain Institute, with your help, is Peaking Pioneer Cities (APPC) is helping 23 Chinese global shipping and aviation industries, and in CEO Letter on the globe. Although the world’s energy problems might working to transform energy use on a global scale. cities peak carbon emissions early and low by the U.S. accelerating the transition from fossil 2 providing technical support and resources, and fuels to renewables, transforming mobility in 3 how we are working with the APPC to create a cities, improving the efficiency of trucking, peaking handbook that any Chinese city can use to addressing fugitive methane emissions, and do the same. You will also learn how we are freeing increasing building efficiency—RMI is working Caribbean and other islands from their dependence hard to help realize a global energy revolution. on expensive, imported oil, and helping increase Summer 2016 access to affordable, reliable electricity in sub­ But we can’t do it alone. Our industry and Saharan Africa. Our Islands Energy Program and philanthropic partners are integral to our SEED Program (Sustainable Energy for Economic success. With your support, we can transform Development) are critical to these countries’ global energy use to create a clean, prosperous, necessary integrated energy transitions. and secure low­carbon future. As the world becomes more connected, and Jules Kortenhorst climate change affects each and every one of us, a is chief executive global viewpoint is crucial. So we speak with our officer of Rocky board member Maria van der Hoeven, former Mountain Institute. head of the International Energy Agency, about energy security and the importance of collab­ oration to transform our energy future. GET INVOLVED Philanthropic support makes RMI’s work possible. Join us by making HELPING AT HOME a donation today to help create a clean, prosperous, and secure low- Of course, we are also working close to home. In carbon future. this issue we take you on a photo tour of our new Give an unrestricted gift or target your gift to support an RMI Innovation Center in Basalt, Colorado. Our net­ project that addresses your passion. top left, © Rocky Mountain Institute; bottom left, iStock.com; right, iStock.com zero energy office building serves as a “living lab” and a practical model to propel the industry www.rmi.org/donate PHOTOS: toward deep green buildings. AMORY’S ANGLE what we want energy for—what “end­uses” we FIGURE 1A: A “hard” energy path representing government and industry forecasts of total U.S. sought, such as hot showers, cold beer, mobility, energy use during 1975–2025. SOFT ENERGY PATHS comfort, smelted alumina, baked bread—and how to deliver each of those services by providing An Illustrative, Schematic Future for U.S. Gross Primary Energy Use the amount, kind, scale, and source of energy Lessons of the First 40 Years 250 best suited to the task. This end­use concept soon By Amory B. Lovins merged with Roger Sant’s “least­cost” language, 200 resonant with the emerging Reaganomics hen the 1973 oil shock threatened Forty years later, a review of its initial reception emphasis on free markets. The resulting “end­ 150 COAL security and prosperity, America’s and continued influence shows what lessons have use/least­cost” approach revealed the most cost­ per year ) BTU 15 initial policy responses were con­ and haven’t been learned. effective solutions, chosen via competition or 100 Wfused and ineffectual. Intensifying business as planning, to such questions as whether to keep usual—drilling oil and gas wells, building giant warm in winter by gas or electric heating, or by A LOOK BACK TO 1976 50 OIL AND GAS coal and nuclear plants, perhaps developing coal­ insulation and weatherstripping. Quadrillion (10 NUCLEAR to­liquids synfuels—was vigorously proposed, To this 28­year­old author, it felt like dropping 0 but soon began looking too costly, dirty, slow, and a seed crystal into a supersaturated solution, Different questions yield different answers, so the 1975 2000 2025 difficult. The huge capital requirement would suddenly crystallizing the liquid into a whole new article contrasted two ways the U.S. energy system choke off other needed investments and ultimately form. A year later, President Carter invited me could evolve (Figures 1A and 1B). FIGURE 1B: An illustrative alternative “soft” energy path yielding the same GDP growth but make energy prices soar, so faltering demand into the Oval Office to discuss the article. He now combining efficient use with right-sized, right-quality, renewable, and widely accessible couldn't pay for the costly new supplies. Yet by says he found it very helpful in forming his energy sources (“soft technologies”). autumn 1976, no coherent alternative vision had policy—apart from Energy Secretary Schlesinger’s SAVINGS: ACCURATELY ENVISAGED been articulated. Policy imagination was stuck. synfuels effort, the most coherently pro­efficiency­ A later scholarly review found the article had An Alternative Illustrative Future for U.S. Gross Primary Energy Use and­renewables policy before or since. been the only one of dozens of mid­1970s studies 250 s Angle At that teachable moment, my Foreign Affairs with accurate foresight about total U.S. primary ’ article “Energy Strategy: The Road Not Taken?” Incumbent energy industries greeted the article energy use in 2000 (foresight, but explicitly not a 200 Amory reframed the energy problem and added an with skepticism, scorn, even outrage. A four­inch­ forecast, as it is often still mischaracterized). The alternative vision of U.S.
Recommended publications
  • Twenty-Fifth Session of the Committee on Sustainable Energy 28-30 September 2016, Geneva, United Nations, Palais Des Nations
    CSE-25/2016/INF.7 Twenty-fifth session of the Committee on Sustainable Energy 28-30 September 2016, Geneva, United Nations, Palais des Nations BIOGRAPHY OF KEYNOTE SPEAKERS Dr. Volker Krey Deputy Program Director, Energy Program, International Institute for Applied Systems Analysis (IIASA) Volker Krey graduated in theoretical physics from the University of Dortmund (Germany) in 2002. In 2003, he joined the Institute of Energy Research - Systems Analysis and Technology Evaluation of the Research Centre Julich, where he continued to work until 2007. Since 2006, he has held a PhD in mechanical engineering from the Ruhr-University of Bochum (Germany). Dr. Krey first visited IIASA as a participant of the Young Scientists Summer Program (YSSP) in 2004. He joined IIASA's Energy Program in October 2007 and since October 2011, is the Deputy Program Director. Dr. Krey's main fields of scientific interest are the integrated assessment of climate change and the energy challenges, including energy security and energy access. His work focuses on the development and application of integrated assessment models with different regional focuses (national to global scale) and time horizons. In addition, decision making under uncertainty, in particular in the context of future energy transitions and climate change mitigation strategies has been an important part of Dr. Krey's research activities. He has been appointed Lead Author of the recently published IPCC 5th Assessment Report of Working Group III, a Lead Author of the Global Energy Assessment (GEA), and a Lead Author of the IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Since 2010, he has been an Associate Deputy Editor of the well-known journal Climatic Change.
    [Show full text]
  • Backcasting Futures for Nuclear Energy and Society
    This is a repository copy of Backcasting futures for nuclear energy and society: a qualitative analysis of European stakeholder perspectives (D5.3 for the History of Nuclear Energy and Society Project). White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/143916/ Version: Published Version Monograph: Cotton, Matthew David orcid.org/0000-0002-8877-4822, Rowe, Gene, Whitton, John et al. (9 more authors) (2019) Backcasting futures for nuclear energy and society: a qualitative analysis of European stakeholder perspectives (D5.3 for the History of Nuclear Energy and Society Project). Research Report. European Commision , Brussels. Reuse This article is distributed under the terms of the Creative Commons Attribution-NoDerivs (CC BY-ND) licence. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the original authors. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ D5.3: Backcasting futures for nuclear energy and society: a qualitative analysis of European stakeholder perspectives Lead author: Matthew Cotton (University of York) Evaluation report and review: Gene Rowe (GRE) Contributors, reviewers and workshop facilitators:
    [Show full text]
  • (Nxpowerlite).Ppt
    MAP/Ming Professorship, Engineering School, Stanford University, 29 March 2007 CEE 173L/273L: Advanced Energy End-Use Efficiency Public Lectures in Advanced Energy Efficiency: 4. Implementation “To be truly radical is to make hope possible, not despair convincing.” — Raymond Williams Amory B. Lovins Chairman and Chief Scientist Rocky Mountain Institute www .rmi.org [email protected] Copyright © 2007 Stanford University. All rights reserved. Distribution licensed to Rocky Mountain Institute. Osage (Iowa) municipal utilities ◊ 11 employees serving ~3,800 population ◊ A decade of demand-side management advice to homes and small businesses: Prepaid all the debt and built a $2.5M emergency fund Cut the rates 5 times in 5 y (by 1/3 real, to 1/2 IA av.) Kept existing factories competitive & attracted two more Kept >$1,000/household-y in town, supporting local jobs and multipliers Made Osage noticeably more prosperous than comparable neighboring towns ◊ If you can’t keep the bathtub full because the water keeps running out…do you need a bigger water-heater, or do you need a plug? U.S. energy/GDP already cut 46%, to very nearly the 1976 “soft path” 250 primary energy consumption (quadrillion BTU/year) 200 "hard path" projected by industry and government ~1975 government USEIA Annual 150 Energy Outlook actual total actual total energy saved 86 q/y = Reference Case, consumption 2004 and 2006 reported by USEIAconsumption 2.12× 2005 oil 100 "soft path" proposed by Lovins, Foreign Affairs , Fall 1976 coal gas oil and gas 50 soft technologies oil
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI 05/29/08 Date:___________________ Carl Sterner I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: Master in: Architecture It is entitled: A Sustainable Pattern Language: A Comprehensive Approach to Sustainable Design This work and its defense approved by: Chair: T_om__ _Bible___________________________ Elizabeth______ _Riorden________________________ Michael_____ _Zaretsky_________________________ _______________________________ _______________________________ A Sustainable Pattern Language: A Comprehensive Approach to Sustainable Design Carl S. Sterner Bachelor of Architecture University of Cincinnati, 2006 Submitted in partial fulfillment of the requirements for the degree of Master of Architecture University of Cincinnati College of Design, Architecture, Art & Planning School of Architecture & Interior Design Committee Members: G. Thomas Bible Elizabeth Riorden Michael Zaretsky May 2008 Copyright © 2008 by Carl S. Sterner All rights reserved. Please direct reprint requests and questions to: Carl S. Sterner, [email protected] Abstract Sustainable design as presently prac- ticed focuses on technical solutions, ignoring the socio-cultural dimensions of sustainability. A truly sustainable society will require substantial change to our economic structure and social order. Architecture must therefore en- gage both the social and technical di- mensions of sustainability. This thesis attempts to understand the architectural implications
    [Show full text]
  • Amory B Lovins Adjunct Professor, Civil and Environmental Engineering
    Amory B Lovins Adjunct Professor, Civil and Environmental Engineering Bio BIO Physicist Amory Lovins (1947– ) is Cofounder (1982) and Chairman Emeritus, and was Chief Scientist (2007–19), of Rocky Mountain Institute (www.rmi.org), with which he continues to collaborate as an independent contractor and a Trustee. He has designed numerous superefficient buildings, vehicles, and industrial plants, and synthesized an "integrative design" method and practice that can make the energy efficiency resource severalfold larger, yet cheaper, often with increasing returns. Since 1973 he has also advised major governments and firms in more than 70 countries on advanced energy efficiency and strategy, emphasizing efficiency, renewables integration, and the links between energy, resources, environment, security, development, and economy. Lovins has received the Blue Planet, Volvo, Zayed, Onassis, Nissan, Shingo, and Mitchell Prizes, MacArthur and Ashoka Fellowships, 12 honorary doctorates, the Heinz, Lindbergh, Right Livelihood, National Design, and World Technology Awards, many other energy and environment recognitions, and Germany’s highest civilian honor (the Officer’s Cross of the Order of Merit). A Harvard and Oxford dropout, former Oxford don, honorary US architect, Swedish engineering academician, and 2011–18 member of the US National Petroleum Council, he has taught at ten universities (most recently the US Naval Postgraduate School and Stanford's School of Engineering as spring 2007 MAP/Ming Visiting Professor, returning in 2020– as Adjunct Professor of Civil and Environmental Engineering)— teaching only subjects he hasn’t formally studied, so as to cultivate beginner’s mind. In 2009, Time named him one of the world’s 100 most influential people, and Foreign Policy, one of the 100 top global thinkers.
    [Show full text]
  • The Time-Series of Energy Mix and Transition: a Comparative Study of OECD Countries Through the Fuzzy-Set Analysis
    energies Article The Time-Series of Energy Mix and Transition: A Comparative Study of OECD Countries through the Fuzzy-Set Analysis Taewook Huh 1,* , Yong-Chan Choi 2 and Jiyoung Hailiey Kim 3 1 Graduate School of Future Strategy, KAIST (Korea Advanced Institute of Science & Technology), Daejeon 34141, Korea 2 Strategic Planning Center, KAIST (Korea Advanced Institute of Science & Technology), Daejeon 34141, Korea; [email protected] 3 Graduate School of International Studies, Seoul National University, Seoul 08826, Korea; [email protected] * Correspondence: [email protected] Received: 20 September 2018; Accepted: 30 October 2018; Published: 1 November 2018 Abstract: This study aims to analyze the global trends of energy mix and energy transition from a chronological view (from Y1995 to Y2015) and identify the actual results based on the empirical findings. It sets up a measurement framework of energy mix (four energy sources: fossil fuel (F), hydroelectric (H), renewable (R), and nuclear (N)), and compares thirty-four Organisation for Economic Cooperation and Development (OECD) countries’ cases through the fuzzy-set ideal type analysis. In short, twelve ideal types of energy mix of the thirty-four OECD countries were derived in Y1995; eleven ideal types in Y2000, thirteen ideal types in Y2005, twelve ideal types in Y2010, and fifteen ideal types in Y2015, respectively. This study particularly reveals the gradual change of the features of energy transition, although an epoch-making trend of overall energy transition in OECD countries is not identified. For example, from1995 to 2010, in the case of Type 7 (F*h*r*N) with a characteristic of ‘pan-conventional energy-centered mix’ having two high features (F, N), and of Type 8 (F*h*r*n), characterized by ‘fossil fuel-centered energy mix’ with one high feature (F), seven to eight countries were steadily included, but in 2015 there was a significant decrease to four countries (solely Type 7).
    [Show full text]
  • Renewing Power (Dissertation)
    Renewing power Including global asymmetries within the system boundaries of solar photovoltaic technology Roos, Andreas 2021 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Roos, A. (2021). Renewing power: Including global asymmetries within the system boundaries of solar photovoltaic technology. Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 25. Sep. 2021 Renewing power Including global asymmetries within the system boundaries of solar photovoltaic technology ANDREAS ROOS HUMAN ECOLOGY | FACULTY OF SOCIAL SCIENCES | LUND UNIVERSITY AN ECOLABEL 3041 0903 NORDIC SW SOLAR PHOTOVOLTAIC (PV) TECHNO- LOGY is rapidly emerging as a cost-effec- tive option in the world economy.
    [Show full text]
  • Cleaner Energy, Greener Profits
    Cleaner Energy, Greener Profits: Fuel Cells as Cost-Effective Distributed Energy Resources Contents: Executive Summary . 2 By Joel N. Swisher, Ph.D., P.E. Introduction . 4 Rocky Mountain Institute Fuel cells: A small, clean,reliable This publication and its underlying research were funded power source . 6 by the grants from the W. Alton Jones Foundation, What is different Pew Charitable Trusts, and Energy Foundation. about today’s electricity problems? The author, a civil and mechanical engineer with a . 8 Stanford doctorate in civil and environmental engineering, is an authority on distributed generation Changing Trends in and leads RMI’s Energy and Resource Services team. the Electricity Industry . 9 Small is profitable: the economic benefits of distributed generation . 13 Early markets and commercialization paths . 32 Cleaner Energy, Greener Profits Executive Summary The electric power industry is undergoing centrally focused “generation-transmission- major changes that are reshaping the traditional distribution” companies into a more heteroge- roles of utilities, creating opportunities for new neous structure. The new industry will be made technologies, and redefining the scope and up of companies fulfilling various traditional character of government regulation. These roles, including independent power producers, changes are arising out of the interaction of electric service providers, energy brokers and several driving forces: marketers, transmission operators, and local distribution companies. • An emerging technological shift could offer distributed generation sources economic One of the most promising and exciting distrib- benefits unavailable to traditional, central- uted generation (DG) options is fuel cell ized sources of electricity. technology, which converts fuel to electricity at • Regulatory and public policy support is high efficiency, without combustion, and with growing for competition over traditional negligible emissions.
    [Show full text]
  • NATURAL CAPITALISM by Christopher Juniper
    Rocky Mountain Institute/volume xvii #1/spring 2001 RMISolutions newsletter F ROZEN ASSETS? ALASKAN OIL’S THREAT TO NATIONAL NERGY ECURITY E S by Amory B. Lovins and L. Hunter Lovins “We must continue, I believe, to safeguard the Arctic National Wildlife Refuge, one of the last truly wild places on Earth—the Serengeti of the Americas.” —PRESIDENT CLINTON, JANUARY 17, 2001 The Arctic National Wildlife Refuge. photo: Galen Rowell S YOU READ THIS ISSUE OF RMI improve but compromise national energy Solutions, Congress is debating security and economic vitality, especially CONTENTS whether the oil potential when compared with alternatives that ben- A HYPERCAR MAKES ITS MOVE ... page 4 beneath the Arctic National Wildlife Refuge efit both and improve the environment. (ANWR) in Alaska is worth the environ- THE NATCAP CONSUMER ..... page 6 mental damage caused by extracting and FOLLOW THE MONEY burning it. Largely unexamined so far are First, the economics of drilling for Refuge A LETTER FROM OZ ....... page 8 more basic questions: Is it profitable? Is it oil look as unrewarding as its politics. For GDS IN EUROPE ........ page 10 necessary? Is drilling a good idea? Is there a the oil industry to invest, the Refuge must better way? hold a lot of oil, and the oil must sell for a BILL BROWNING,HONORARY AIA . page 11 The rationale for drilling in the Refuge is to high enough price for long enough to DEAR ROCKY .......... page 12 find a domestic oil supply, income for recover costs and earn profits. When JOHN TODD—WATER DOCTOR .. page 14 Alaska, and profit for private firms.
    [Show full text]
  • The Hidden Economic Benefits of Making Electrical Resources the Right Size
    ISSmall PROFITABLE The Hidden Economic Benefits of Making Electrical Resources the Right Size by Amory B. Lovins, E. Kyle Datta, Thomas Feiler, Karl R. Rábago, Joel N. Swisher, André Lehmann, and Ken Wicker 207 BENEFITS OF DISTRIBUTED RESOURCES: 1 Distributed resources’ generally shorter construction period leaves less time for reality to diverge from expectations, thus reducing the 47 The value of the resale option for distributed resources is further enhanced by their divisibility into modules, of which as many as desired may be resold and the rest retained to a degree closely matched probability and hence the financial risk of under- or overbuilding. 2 Distributed resources’ smaller unit size also reduces the consequences of such divergence and hence reduces its financial risk. to new needs. 48 Distributed resources typically do little or no damage to their sites, and hence minimize or avoid site remediation costs if redeployed, salvaged, or decommissioned. 49 Volatile fuel 3 The frequent correlation between distributed resources’ shorter lead time and smaller unit size can create a multiplicative, not merely an additive, risk reduction. 4 Shorter lead time further reduces prices set by fluctuating market conditions represent a financial risk. Many distributed resources do not use fuels and thus avoid that costly risk. 50 Even distributed resources that do use fuels, but use forecasting errors and associated financial risks by reducing errors’ amplification with the passage of time. 5 Even if short-lead-time units have lower thermal efficiency, their lower capital and interest them more efficiently or dilute their cost impact by a higher ratio of fixed to variable costs, can reduce the financial risk of volatile fuel prices.
    [Show full text]
  • The Electricity Journal 33 (2020) 106827
    The Electricity Journal 33 (2020) 106827 Contents lists available at ScienceDirect The Electricity Journal journal homepage: www.elsevier.com/locate/tej The coming transformation of the electricity sector: A conversation with T Amory Lovins Ahmad Faruqui The Brattle Group, San Francisco, CA United States ABSTRACT The US electricity sector is undergoing a major transformation toward clean energy. In this article, I discuss several key enabling steps with Amory Lovins, whose 1976 article about the “soft energy path” was instrumental in changing public policy not only in the US but throughout the globe. I first came to know of Amory Lovins when I was a graduate student Senate hearing record. at the University of California at Davis interning at the California Once the supply-side industries’ initial pique abated somewhat, and Energy Commission. His article on “Energy Strategy: The Road Not their surrogates proved unable to rebut the analysis, many thoughtful Taken?” had appeared in Foreign Affairs. It caught my eye because the industry leaders started to realize I’d suggested how they could make proposition it put forward seemed to reverse the conventional way of more money with less risk. As the dust settled about a year into the fray, thinking about energy strategy. Sometime in the early 1980s, Amory Arco’s Chief Economist, Dr. David Sternlight, reset the tone by writing visited EPRI where I was working and we had a lively discussion about that he for one didn’t care if I were only half right—that’d be better the future of electric utilities. In the decades that followed, I have fol- performance than he’d seen from the rest of them.
    [Show full text]
  • Advances in Energy Policy: New Opportunities for Japan
    Advances in Energy Policy: New Opportunities for Japan Amory B. Lovins CEO (Research), Rocky Mountain Institute, www.rmi.org Director, The Hypercar Center, www.hypercarcenter.org Chairman, Hypercar Inc., www.hypercar.com Energy Policy Working Group (Kaya Yoichi-sensei, Chairman), MITI MIITI, Tokyo, 27 November 2000 Copyright © 2000 Rocky Mountain Institute. All rights reserved. Noncommercial distribution by the Working Group is permitted for its and participants’ internal use. The Brownian Random Walk of World Real Oil Price, 1881–1993 Year-to-year percentage price % change, y ea r (-12 ,+255) n -1 to n changes with a one-year lag in 1974 8 5 between the axes. If the price movements showed a trend, 6 5 the “center of gravity” would 4 5 favor a particular quadrant. All that 2 5 % ch an g e, y ear n to n +1 happened after -5 5 -3 5 -15 5 25 4 5 65 85 5 1973 is that volatility tripled; (+255,+4) -1 5 in 197 3 changes stayed perfectly random, -3 5 just as for any -5 5 other commodity. Graph devised by H.R. Holt, USDOE Market surprise: world crude-oil real price vs. oil consumption, 1970–1Q2000 50 1981 1983 45 1980 40 35 1985 30 1979 1991 25 1974 2000 1997 (1Q consumption) 20 1987 15 1989 1998 10 price (Saudi 34°API light,1992 $) 1999 5 1970 1973 0 45.0045 50.0050 55.00 55 60 60.00 65 65.00 70 70.00 75 75.00 80 80.00 consumption, million barrels per day Data source: http://www.doe.eia.gov, downloaded 24 October 2000 By 2050, an affluent world could meet or beat a 3–4´ C reduction goal ´ 2 ´ 3–4 ÷ 2–4 population ´ affluence per capita ´ carbon intensity C = energy conversion eff.
    [Show full text]