Hydraulic Conductivity and Porosity Heterogeneity Controls on Environmental Performance Metrics: Implications in Probabilistic Risk Analysis
Advances in Water Resources 127 (2019) 1–12 Contents lists available at ScienceDirect Advances in Water Resources journal homepage: www.elsevier.com/locate/advwatres Hydraulic conductivity and porosity heterogeneity controls on environmental performance metrics: Implications in probabilistic risk analysis Arianna Libera a,∗, Christopher V. Henri b, Felipe P.J. de Barros a a Sonny Astani Dept. of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA b Dept. of Land, Air and Water Resources, University of California, Davis, CA, USA a b s t r a c t Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity ( K ) and, to a lesser degree, the porosity ( ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs Monte Carlo simulations to investigate the coupled effect of − spatial variability on the transport behavior (and uncertainty) of conservative and reactive plumes within a 3D aquifer domain. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological properties, and compare the computational results from the joint − heterogeneous system with the results originating from generally adopted constant conditions. In our study, the spatially variable − fields are positively correlated. We statistically analyze key Environmental Performance Metrics: first arrival times and peak mass fluxes for non-reactive species and increased lifetime cancer risk for reactive chlorinated solvents. The conservative transport simulations show that considering coupled − fields decreases the plume dispersion, increases both the first arrival times of solutes and the peak mass fluxes at the observation planes.
[Show full text]