Phosphoinositides Control the Localization of HOPS Subunit VPS41, Which Together with VPS33 Mediates Vacuole Fusion in Plants

Total Page:16

File Type:pdf, Size:1020Kb

Phosphoinositides Control the Localization of HOPS Subunit VPS41, Which Together with VPS33 Mediates Vacuole Fusion in Plants Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants Carla Brilladaa,1, Jiameng Zhenga,1,2, Falco Krügerb, Eliezer Rovira-Diaza,3, Jana Christin Askanib, Karin Schumacherb, and Marcela Rojas-Piercea,4 aDepartment of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695; and bCentre for Organismal Studies, Plant Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany Edited by Natasha V. Raikhel, Center for Plant Cell Biology, Riverside, CA, and approved July 19, 2018 (received for review May 16, 2018) The vacuole is an essential organelle in plant cells, and its dynamic vacuolar soluble NSF attachment protein receptor (SNARE) nature is important for plant growth and development. Homotypic complex containing VTI11 (2). membrane fusion is required for vacuole biogenesis, pollen germi- Vacuole fusion is not well characterized in plants, but in nation, stomata opening, and gravity perception. Known compo- eukaryotic cells it requires SNAREs, RAB GTPases, membrane nents of the vacuole fusion machinery in eukaryotes include SNARE lipids, and a tethering complex. SNARE proteins mediate proteins, Rab GTPases, phosphoinositides, and the homotypic fusion membrane fusion by assembly of a four-helix bundle, or trans- and vacuolar protein sorting (HOPS) tethering complex. HOPS SNARE complex, from one SNARE located in the incoming function is not well characterized in plants, but roles in embryo- vesicle and three SNAREs located in the target membrane. The genesis and pollen tube elongation have been reported. Here, we SNARE complex brings the two membranes together via a zip- show that Arabidopsis HOPS subunits VPS33 and VPS41 accumulate pering mechanism that is thought to result in membrane fusion in late endosomes and that VPS41, but not VPS33, accumulates (16). A SNARE complex for plant prevacuolar compartments (PVCs) and the vacuole is composed of SYP22/VAM3 (Qa- in the tonoplast via a wortmannin-sensitive process. VPS41 and SNARE), VTI11 (Qb-SNARE, called Vti1p in yeast), SYP51 VPS33 proteins bind to liposomes, but this binding is inhibited by (Qc-SNARE), and VAMP727 (R-SNARE) (17, 18). The Qabc PLANT BIOLOGY phosphatidylinosiltol-3-phosphate [PtdIns(3)P] and PtdIns(3,5)P2, complex can also associate with the R-SNAREs VAMP711 or which implicates a nonconserved mechanism for HOPS recruitment VAMP713 (19, 20). A role of these SNAREs in vacuole fusion is in plants. Inducible knockdown of VPS41 resulted in dramatic vacu- evidenced by altered vacuole phenotypes of vti11,syp22, and ole fragmentation phenotypes and demonstrated a critical role for syp22 vamp727 double mutants (2, 18, 21). HOPS in vacuole fusion. Furthermore, we provide evidence for ge- The homotypic fusion and vacuole protein sorting (HOPS) netic interactions between VPS41 and VTI11 SNARE that regulate tethering complex was recently shown to mediate homotypic vac- vacuole fusion, and the requirement of a functional SNARE complex uole fusion in plants (3). HOPS is important for the fusion of for normal VPS41 and VPS33 localization. Finally, we provide evi- vacuoles in yeast (16, 22), and fusion of lysosomes in Caenorhabditis dence to support VPS33 and SYP22 at the initial stage for HOPS– SNARE interactions, which is similar to other eukaryotes. These Significance results highlight both conserved and specific mechanisms for HOPS recruitment and function during vacuole fusion in plants. Plant vacuoles are essential organelles and occupy up to 90% of the cell volume. Their roles include regulation of stomata move- Arabidopsis | vacuole fusion | HOPS | SNARE | phosphoinositides ments, protein storage in seeds, gravity sensing, and ion ho- meostasis. Vacuole or lysosome fusion in eukaryotes is mediated he plant vacuole is an essential organelle with multiple roles by two multisubunit complexes, SNARE and homotypic fusion and Tincluding storage, pH homeostasis, and recycling (1). Vacu- vacuolar protein sorting (HOPS), but only the SNARE complex is ole fusion is required for stomata opening, pollen fertility, and well characterized in plants. Here, we show that, similar to other embryo viability (2–4). Two types of vacuoles exist in plant cells. eukaryotes, HOPS mediates vacuole fusion in plants by interaction Embryos in developing seeds contain multiple protein storage with SNAREs and that the HOPS subunit VPS33 and the SNARE vacuoles (PSVs), which have a neutral pH and accumulate protein SYP22 display the sites for interaction between these storage proteins such as the 7S and 11S globulins. Cells in most complexes. In contrast to other eukaryotes, however, plant HOPS mature tissues, instead, contain one large lytic vacuole, which is recruitment to liposomes is inhibited by phosphoinositides, which acidic, abundant in lytic proteases, and critical for ion homeo- appear to define strict rules for regulating fusion and fragmen- stasis and cell turgor (5). Transition from PSVs to lytic vacuoles tation of dynamic vacuoles. occurs during germination (6) and involves PSV fusion and Author contributions: C.B., J.Z., F.K., J.C.A., K.S., and M.R.-P. designed research; C.B., J.Z., maturation (7). Vacuoles in root meristematic cells are formed F.K., E.R.-D., J.C.A., and M.R.-P. performed research; C.B., J.Z., F.K., K.S., and M.R.-P. ana- by interconnected tubular structures (8), and membrane fusion is lyzed data; and C.B. and M.R.-P. wrote the paper. necessary for the establishment of the central lytic vacuole (2). The authors declare no conflict of interest. Transient and mobile structures such as transvacuolar strands, This article is a PNAS Direct Submission. sheets, and bulbs contribute to the dynamic nature of plant vacuoles Published under the PNAS license. – (9 12). In vegetative cells, however, very little vacuole fragmenta- 1C.B. and J.Z. contributed equally to this work. tion occurs and most cells contain a single large vacuole. Two ex- 2Present address: Product Department, Abmart, Shanghai 200233, China. ceptions are the changes in guard cell vacuoles during stomata 3Present address: Department of Microbiology, Biochemistry and Molecular Genetics, movements (2, 13, 14) and in the leaf motor cells of the mimosa tree Rutgers, The State University of New Jersey, Newark, NJ 07103. (Albizia julibrissin) (15). In both cases, vacuole remodeling occurs 4To whom correspondence should be addressed. Email: [email protected]. during dramatic changes in cellular turgor that drive organ move- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ments. The changes in guard cell vacuoles that occur during stomata 1073/pnas.1807763115/-/DCSupplemental. opening require homotypic membrane fusion mediated by the www.pnas.org/cgi/doi/10.1073/pnas.1807763115 PNAS Latest Articles | 1of10 Downloaded by guest on September 23, 2021 elegans (23) and humans (24). The yeast HOPS complex is the best Results characterized and is formed by six subunits. Vps39p and Vps41p VPS41 and VPS33 Partially Colocalize with Late Endosomes, but only are HOPS specific, while Vps11p, Vps16p, Vps18p, and Vps33p VPS41 Is Detected at the Tonoplast. VPS41 (AT1G08190) and form the “CORE” and are shared with CORVET, a tethering VPS33 (AT3G54860) share 23.29% and 19.17% sequence identity complex that functions at the early endosome (25, 26). HOPS with yeast Vps41p and Vps33p, respectively. Therefore, VPS33 and recruitment to yeast vacuole membranes requires phosphatidyli- VPS41 are likely homologs of these yeast HOPS proteins (31, 50). nositol 3-phosphate [PtdIns(3)P] and PtdIns(4,5)P2, two important We first investigated whether VPS41 and VPS33 colocalized in regulatory lipids in vacuole fusion (27). Vps33 belongs to the vacuolar or prevacuolar membranes, as expected for HOPS. family of Sec1/Munc18 (SM) proteins, which are implicated in Transient expression of mRFP-VPS41 and VPS33-GFP under assembly and regulation of SNARE complexes. SM proteins have control of UBQ10 promoters in Nicotiana benthamiana leaves a three-domain architecture, in which domains 1 and 3 form a cleft indicated that these proteins accumulate in the cytosol and nu- that accommodates the SNAREs (28). The X-ray structure of a cleus, and associate with membranes in punctate structures (SI fungal Vps33 bound to a single SNARE, together with in vitro fu- Appendix, Fig. S1 A and B). RFP-VPS41 and VPS33-GFP colo- sion assays, suggests that VPS33 catalyzes SNARE complex as- calized in the majority of the punctate structures and the nucleus, sembly through a specific SNARE motif recognition (29). All other and partially at the cell periphery (SI Appendix,Fig.S1C), which HOPS subunits are predicted to form a β-propeller at the N ter- supports their participation in a complex. These experiments, however, do not provide enough resolution to identify the com- minus and an α-solenoid at the C terminus (30). The complete partments where these proteins accumulate and they may be HOPS complex has been detected in Arabidopsis by mass spec- influenced by overexpression. To better characterize protein local- trometry (3), and all subunits are encoded in the Arabidopsis ge- izations, VPS41-GFP (4) and VPS33-GFP were analyzed in stable nomeassinglegenes(31).VACUOLELESS1 (VCL1), the homolog Arabidopsis transgenic plants using full-length genomic fusions to of yeast Vps16, VPS11, VPS39,andVPS41 are required for vacuole GFP under native promoters. Both proteins were again detected in biogenesis and pollen development (3, 4, 32–35). VCL1 interacts the cytosol, but membrane association was more discernible. Similar with VPS33 and VPS11 and localizes to PVCs and the tonoplast to its localization in pollen (4), VPS41-GFP was detected at the (35). VPS18 and VPS39 were also localized to a subdomain of the tonoplast and punctate organelles in roots (Fig. 1A), and this lo- tonoplast and to cytosolic organelles (3). The molecular mecha- calization was not affected by the location of the fluorescence tag as nisms for HOPS function and regulation during vacuole fusion in the localization of YFP-VPS41 was very similar (SI Appendix,Fig.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Inhibition of Pikfyve Using YM201636 Suppresses the Growth of Liver Cancer Via the Induction of Autophagy
    ONCOLOGY REPORTS 41: 1971-1979, 2019 Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy JIU-ZHOU HOU1, ZHUO-QING XI1, JIE NIU1, WEI LI1, XIAO WANG1, CHAO LIANG1, HUA SUN1, DONG FANG1 and SONG-QIANG XIE2 1Institute for Innovative Drug Design and Evaluation; 2Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China Received May 9, 2018; Accepted December 6, 2018 DOI: 10.3892/or.2018.6928 Abstract. Liver cancer is among the most common types Introduction of cancer worldwide. The aim of the present study was to investigate whether the phosphatidylinositol-3-phos- Liver cancer is one of the most common types of cancer world- phate 5-kinase (PIKfyve) inhibitor, YM201636, exerts wide, ranking as the third leading cause of cancer-associated anti-proliferative effects on liver cancer. The methods used in mortality (1). Despite the great advances in the use of modern the present study included MTT assay, flow cytometry, western surgical techniques in combination with chemotherapy, the blot analysis and an allograft mouse model of liver cancer. The overall 5-year survival rate for patients with liver cancer results revealed that YM201636 inhibited the proliferation of remains poor (2). Therefore, novel strategies for the anticancer HepG2 and Huh-7 cells in a dose-dependent manner. HepG2 therapy of liver cancer are urgently required. and Huh-7 cells exhibited strong monodansylcadaverine Phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) is a staining following treatment with YM201636. Accordingly, lipid kinase that phosphorylates phosphatidylinositol-3-phos- YM201636 treatment increased the expression of the phate (PI3P) to generate phosphatidylinositol 3,5-bisphosphate autophagosome-associated marker protein microtubule-asso- [PtdIns(3,5)P2] or phosphatidylinositol 5-phosphate ciated 1A/1B light chain 3-II in HepG2 and Huh-7 cells.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • S42003-020-1008-Z.Pdf
    ARTICLE https://doi.org/10.1038/s42003-020-1008-z OPEN A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis Qi Yan 1,2,6, Kai Zhu1,6, Lu Zhang1,3,6, Qiang Fu1, Zhaowei Chen1, Shan Liu1, Dou Fu1, Ryota Nakazato4, ✉ 1234567890():,; Katsuji Yoshioka4, Bo Diao5, Guohua Ding1, Xiaogang Li3 & Huiming Wang 1 Renal fibrosis is controlled by profibrotic and antifibrotic forces. Exploring anti-fibrosis factors and mechanisms is an attractive strategy to prevent organ failure. Here we identified the JNK- associated leucine zipper protein (JLP) as a potential endogenous antifibrotic factor. JLP, predominantly expressed in renal tubular epithelial cells (TECs) in normal human or mouse kidneys, was downregulated in fibrotic kidneys. Jlp deficiency resulted in more severe renal fibrosis in unilateral ureteral obstruction (UUO) mice, while renal fibrosis resistance was observed in TECs-specific transgenic Jlp mice. JLP executes its protective role in renal fibrosis via negatively regulating TGF-β1 expression and autophagy, and the profibrotic effects of ECM production, epithelial-to-mesenchymal transition (EMT), apoptosis and cell cycle arrest in TECs. We further found that TGF-β1 and FGF-2 could negatively regulate the expression of JLP. Our study suggests that JLP plays a central role in renal fibrosis via its negative crosstalk with the profibrotic factor, TGF-β1. 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China. 2 Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 3 Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
    [Show full text]
  • SAC Phosphoinositide Phosphatases at the Tonoplast Mediate Vacuolar Function in Arabidopsis
    SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis Petra Novákováa,b,c, Sibylle Hirschb,c,1, Elena Ferarub,c,2, Ricardo Tejosb,c,3, Ringo van Wijkd, Tom Viaeneb,c, Mareike Heilmanne, Jennifer Lerchee, Riet De Ryckeb,c, Mugurel I. Ferarub,c,2, Peter Gronesa,b,c, Marc Van Montagub,c,4, Ingo Heilmanne, Teun Munnikd, and Jirí Frimla,b,c,4 aInstitute of Science and Technology Austria, 3400 Klosterneuburg, Austria; bDepartment of Plant Systems Biology, Flanders Institute for Biotechnology and cDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; dSection of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands; and eDepartment of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06099 Halle, Germany Contributed by Marc Van Montagu, January 2, 2014 (sent for review December 4, 2013) Phosphatidylinositol (PtdIns) is a structural phospholipid that can function of this minor phospholipid. Recent observations also be phosphorylated into various lipid signaling molecules, desig- hint at a role for PPIs in plant vacuoles (18–20), but the data are nated polyphosphoinositides (PPIs). The reversible phosphoryla- scarce and remain inconclusive. tion of PPIs on the 3, 4, or 5 position of inositol is performed by Advances in deciphering various cellular roles of PIs include a set of organelle-specific kinases and phosphatases, and the insights into the phosphatases responsible for hydrolyzing PPIs. characteristic head groups make these molecules ideal for regu- A group of phosphatases, designated suppressor of actin (SAC) lating biological processes in time and space.
    [Show full text]
  • Bridging the GAP Between Insulin Signaling and GLUT4 Translocation
    Review TRENDS in Biochemical Sciences Vol.31 No.4 April 2006 Bridging the GAP between insulin signaling and GLUT4 translocation Robert T. Watson and Jeffrey E. Pessin Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA Upon binding and activating its cell-surface receptor, in both developing and developed countries, has galva- insulin triggers signaling cascades that regulate many nized the research efforts of scientists worldwide [6]. cellular processes. Regarding glucose homeostasis, At the cellular level, understanding glucose uptake insulin suppresses hepatic glucose production and involves two largely separate fields of inquiry: (i) insulin- increases glucose transport into muscle and adipose receptor signaling and (ii) GLUT4 membrane trafficking. tissues. At the cellular level, glucose uptake results from Not surprisingly, identifying the molecules that link insulin the insulin-stimulated translocation of the glucose signaling to GLUT4 translocation has been a major focus of transporter 4 (GLUT4) from intracellular storage sites research [7]. In addition, insulin-signaling pathways can to the plasma membrane. Although the signaling also be functionally separated into two distinct branches, molecules that function proximal to the activated insulin one defined by the Rho-family GTPase TC10 [8] and the receptor have been well characterized, it is not known other by the phosphatidylinositol 3-kinase (PI3-kinase) (see how the distal insulin-signaling cascade interfaces with Ref. [9] for abbreviations of the inositol phosphates and their and mobilizes GLUT4-containing compartments. kinases) (Figure 2). Although the polyphosphoinositide Recently, several candidate signaling molecules, (PPIn) 3-kinase pathway is well established, the TC10 including AS160, PIKfyve and synip, have been identified branch remains controversial [10,11].
    [Show full text]
  • A Trafficome-Wide Rnai Screen Reveals Deployment of Early and Late Secretory Host Proteins and the Entire Late Endo-/Lysosomal V
    bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A trafficome-wide RNAi screen reveals deployment of early and late 2 secretory host proteins and the entire late endo-/lysosomal vesicle fusion 3 machinery by intracellular Salmonella 4 5 Alexander Kehl1,4, Vera Göser1, Tatjana Reuter1, Viktoria Liss1, Maximilian Franke1, 6 Christopher John1, Christian P. Richter2, Jörg Deiwick1 and Michael Hensel1, 7 8 1Division of Microbiology, University of Osnabrück, Osnabrück, Germany; 2Division of Biophysics, University 9 of Osnabrück, Osnabrück, Germany, 3CellNanOs – Center for Cellular Nanoanalytics, Fachbereich 10 Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany; 4current address: Institute for Hygiene, 11 University of Münster, Münster, Germany 12 13 Running title: Host factors for SIF formation 14 Keywords: siRNA knockdown, live cell imaging, Salmonella-containing vacuole, Salmonella- 15 induced filaments 16 17 Address for correspondence: 18 Alexander Kehl 19 Institute for Hygiene 20 University of Münster 21 Robert-Koch-Str. 4148149 Münster, Germany 22 Tel.: +49(0)251/83-55233 23 E-mail: [email protected] 24 25 or bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Loss of Pikfyve in Platelets Causes a Lysosomal Disease Leading to Inflammation and Thrombosis in Mice
    ARTICLE Received 14 May 2014 | Accepted 13 Jul 2014 | Published 2 Sep 2014 DOI: 10.1038/ncomms5691 Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice Sang H. Min1, Aae Suzuki1, Timothy J. Stalker1, Liang Zhao1, Yuhuan Wang2, Chris McKennan3, Matthew J. Riese1, Jessica F. Guzman1, Suhong Zhang4, Lurong Lian1, Rohan Joshi1, Ronghua Meng5, Steven H. Seeholzer3, John K. Choi6, Gary Koretzky1, Michael S. Marks5 & Charles S. Abrams1 PIKfyve is essential for the synthesis of phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] and for the regulation of endolysosomal membrane dynamics in mammals. PtdIns(3,5)P2 deficiency causes neurodegeneration in mice and humans, but the role of PtdIns(3,5)P2 in non-neural tissues is poorly understood. Here we show that platelet-specific ablation of PIKfyve in mice leads to accelerated arterial thrombosis, and, unexpectedly, also to inappropriate inflammatory responses characterized by macrophage accumulation in multiple tissues. These multiorgan defects are attenuated by platelet depletion in vivo, confirming that they reflect a platelet-specific process. PIKfyve ablation in platelets induces defective maturation and excessive storage of lysosomal enzymes that are released upon platelet activation. Impairing lysosome secretion from PIKfyve-null platelets in vivo markedly attenuates the multiorgan defects, suggesting that platelet lysosome secretion contributes to pathogenesis. Our findings identify PIKfyve as an essential regulator for platelet lysosome homeostasis, and demonstrate the contributions of platelet lysosomes to inflammation, arterial thrombosis and macrophage biology. 1 Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA. 2 Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
    [Show full text]
  • And Loss-Of-Function C9ORF72 ALS/FTD Disease Processes in Vivo
    bioRxiv preprint doi: https://doi.org/10.1101/685800; this version posted June 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Small molecule inhibition of PIKFYVE kinase rescues gain- and loss-of-function C9ORF72 ALS/FTD disease processes in vivo Staats, K. A.1, Seah C.1, Sahimi, A.1, Wang, Y.2, Koutsodendris, N.1, Lin, S.1, Kim, D.1, Chang, W- H.1, Gray, K. A.1, Shi, Y.1, Li, Y.1, Chateau, M.3, Vangoor, V. R.4, Senthilkumar, K.4, Pasterkamp, R. J.4, Cannon, P.3, Zlokovic, B.V.2 & Ichida, J. K.1# 1 Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA 2 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA 3 Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA 4 Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands # Corresponding author. Please address correspondence to Prof. Justin Ichida: [email protected] Staats, K. A. [email protected] Seah C. [email protected] Sahimi, A. [email protected] Wang, Y. [email protected] Koutsodendris, N. [email protected] Lin, S. [email protected] Kim, D. [email protected] Chang, W-H. [email protected] Gray, K.
    [Show full text]
  • Pikfyve Regulation of Endosome-Linked Pathways
    © 2009 The Authors Journal compilation © 2009 John Wiley & Sons A/S Traffic 2009; 10: 883–893 doi: 10.1111/j.1600-0854.2009.00915.x PIKfyve Regulation of Endosome-Linked Pathways Jane de Lartigue3, Hannah Polson1, Morri Received 28 September 2008, revised and accepted Feldman2, Kevan Shokat2, Sharon A. Tooze1, for publication 13 March 2009, uncorrected manuscript 3 3 published online 18 March 2009, published online 21 Sylvie Urbe´ and Michael J. Clague * April 2009 1Secretory Pathways Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, 3-phosphoinositides control the identity and dynamics London WC2A 3PX, UK of endocytic compartments, through the recruitment of 2University of California San Francisco, Cellular and Molecular Pharmacology, 600 16th Street, MC 2280, San multiple effector proteins containing specific recognition Francisco, CA 94158-2280, USA domains. PtdIns3P is generated by the class III PtdIns 3Physiological Laboratory, School of Biomedical 3-kinase, hVps34, and is concentrated on early/sorting Sciences, University of Liverpool, Crown St., Liverpool, endosomes (1). It is required for receptor trafficking (2) L69 3BX, UK and membrane fusion events (3), through its contribution ∗ Corresponding author: Michael J. Clague, to recruitment of several proteins containing FYVE or [email protected] phox homology phox homology (PX) domains. The FYVE domain proteins early endosomal autoantigen-1 (EEA1) and hepatocyte growth factor regulated tyrosine kinase The phosphoinositide 5-kinase (PIKfyve) is a critical substrate (Hrs) are required for endosome fusion and enzyme for the synthesis of PtdIns(3,5)P2,thathas receptor sorting respectively (4,5), whilst the PX domain been implicated in various trafficking events associ- ated with the endocytic pathway.
    [Show full text]
  • Identification of Pikfyve Kinase As a Target in Multiple Myeloma Ferrata Storti Foundation
    Plasma Cell Disorders ARTICLE Identification of PIKfyve kinase as a target in multiple myeloma Ferrata Storti Foundation Cecilia Bonolo de Campos,1 Yuan Xiao Zhu,1 Nikolai Sepetov,2 Sergei Romanov,2 Laura Ann Bruins,1 Chang-Xin Shi,1 Caleb K. Stein,1 Joachim L. Petit,1 Alysia N. Polito,1 Meaghen E. Sharik,1 Erin W. Meermeier,1 Gregory J. Ahmann,1 Ilsel D. Lopez Armenta,1 Jonas Kruse,1 P. Leif Bergsagel,1 Marta Chesi,1 Nathalie Meurice,1 Esteban Braggio1 and A. Keith Stewart1 1Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ and 2Nanosyn Inc., Santa Clara, CA, USA Haematologica 2020 Volume 105(6):1641-1649 ABSTRACT he cellular cytotoxicity of APY0201, a PIKfyve inhibitor, against mul- tiple myeloma was initially identified in an unbiased in vitro chemical Tlibrary screen. The activity of APY0201 was confirmed in all 25 cell lines tested and in 40% of 100 ex vivo patient-derived primary samples, with increased activity in primary samples harboring trisomies and lacking t(11;14). The broad anti-multiple myeloma activity of PIKfyve inhibitors was further demonstrated in confirmatory screens and showed the superior potency of APY0201 when compared to the PIKfyve inhibitors YM201636 and apilimod, with a mid-point half maximal effective concentration (EC50) at nanomolar concentrations in, respectively, 65%, 40%, and 5% of the test- ed cell lines. Upregulation of genes in the lysosomal pathway and increased cellular vacuolization were observed in vitro following APY0201 treatment, although these cellular effects did not correlate well with responsiveness. We confirm that PIKfyve inhibition is associated with activation of the transcrip- tion factor EB, a master regulator of lysosomal biogenesis and autophagy.
    [Show full text]
  • Lysosome Enlargement During Inhibition of the Lipid Kinase Pikfyve Proceeds Through Lysosome Coalescence Christopher H
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs213587. doi:10.1242/jcs.213587 RESEARCH ARTICLE Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence Christopher H. Choy1,2,*, Golam Saffi1,2,*, Matthew A. Gray1, Callen Wallace3, Roya M. Dayam1,2, Zhen-Yi A. Ou1, Guy Lenk4, Rosa Puertollano5, Simon C. Watkins3 and Roberto J. Botelho1,2,‡ ABSTRACT lysosomes is not limited to molecular degradation. Among other Lysosomes receive and degrade cargo from endocytosis, roles, lysosomes are an important storage organelle, they mediate phagocytosis and autophagy. They also play an important role in antigen presentation, they undergo exocytosis to repair membrane sensing and instructing cells on their metabolic state. The lipid damage, and are a genuine signalling platform that senses and kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to informs the cell of its nutrient and stress conditions (Medina et al., modulate lysosome function. PIKfyve inhibition leads to impaired 2015; Settembre and Ballabio, 2014; Sancak et al., 2010; Delamarre degradative capacity, ion dysregulation, abated autophagic flux and a et al., 2005; Xiong and Zhu, 2016; Reddy et al., 2001; Settembre massive enlargement of lysosomes. Collectively, this leads to et al., 2012; Roczniak-Ferguson et al., 2012). various physiological defects, including embryonic lethality, Strikingly, the lysosome is now considered to be a highly neurodegeneration and overt inflammation. The reasons for such dynamic and heterogeneous organelle. Not only can individual cells drastic lysosome enlargement remain unclear. Here, we examined host tens to hundreds of lysosomes, lysosomes themselves are whether biosynthesis and/or fusion-fission dynamics contribute to highly heterogeneous in their pH (Johnson et al., 2016), subcellular swelling.
    [Show full text]