Small Mammal Foraging and Population Responses to Northern Conifer Mast

Total Page:16

File Type:pdf, Size:1020Kb

Small Mammal Foraging and Population Responses to Northern Conifer Mast Western University Scholarship@Western Electronic Thesis and Dissertation Repository 1-28-2013 12:00 AM Small mammal foraging and population responses to northern conifer mast Nikhil Lobo The University of Western Ontario Supervisor Dr. John S. Millar The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Nikhil Lobo 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Lobo, Nikhil, "Small mammal foraging and population responses to northern conifer mast" (2013). Electronic Thesis and Dissertation Repository. 1107. https://ir.lib.uwo.ca/etd/1107 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. SMALL MAMMAL FORAGING AND POPULATION RESPONSES TO NORTHERN CONIFER MAST (Spine title: Interactions between conifer seeds and small mammals) (Thesis format: Integrated Article) by Nikhil Lobo Graduate Program in Biology, Collaborative Program in Environment & Sustainability A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Nikhil Lobo 2013 THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr. John S. Millar Dr. David Sherry Supervisory Committee ______________________________ Dr. Hugh Henry ______________________________ Dr. Liana Zanette ______________________________ Dr. Ian Colquhoun ______________________________ Dr. David Sherry ______________________________ Dr. Hannu Ylönen The thesis by Nikhil Lobo entitled: Small mammal foraging and population responses to northern conifer mast is accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy ______________________ _______________________________ Date Chair of the Thesis Examination Board ii Abstract Conifer seeds are a component of the diet of many rodents, and post-dispersal seed predation by rodents is often implicated as a critical constraint on the regeneration of coniferous forests. However, little is known about the effects of conifer seed availability on individual rodents and their populations. The over-arching goal of this dissertation was to investigate the effects and implications of conifer seed production on the foraging and population dynamics of northern small mammals. The predominant conifer study species were white spruce (Picea glauca) and subalpine fir (Abies lasiocarpa), and the main rodents examined were the deer mouse (Peromyscus maniculatus) and southern red-backed vole (Myodes gapperi). Nutritional analysis and laboratory experiments showed that spruce seeds are a high quality food source to rodents. Mice were able to maintain body condition on diets restricted to these seeds, and voles were able to use spruce seeds as a sole food source in the short-term. In the field, caching rates of spruce seeds varied with seed abundance, but rodents readily consumed these seeds within experimental patches regardless of abundance. Conversely, fir seeds were avoided by rodents in experiments, as was expected based on their low nutritional value and high concentration of plant secondary compounds. Mice increased food intake and retention of digesta in the caecum to maintain body mass on diets restricted to fir seeds. However, voles did not compensate for this low quality seed-diet, and their body condition deteriorated rapidly. In the field, rodents disregarded fir seeds as a valuable resource for current or future use, even at exaggeratedly abundant seed densities. iii Given these individual-level interactions, the rodent population responses to conifer mast seeding that I observed were unexpected. Summer mouse densities and breeding varied with previous fir seed production, although this may have been mediated by population responses of invertebrate post-dispersal seed predators to fir seed availability. In contrast, mouse demography was not affected by spruce mast seeding, but likely due to interspecific competition with the North American red squirrel (Tamiasciurus hudsonicus), a dominant pre-dispersal spruce seed predator. These results reveal direct and indirect consumer-resource pulse dynamics that require further examination. Keywords Rodent, northern coniferous forest, nutritional ecology, population dynamics, foraging behaviour, seed production, seed predation, mast seeding, resource pulses, food quality, plant secondary compounds, consumer-resource dynamics, deer mouse, southern red backed-vole, white spruce, subalpine fir, lodgepole pine, gut morphology, giving-up density, food supplementation, multi-trophic interactions. iv Co-Authorship Statement A version of Chapter 2 was published in the Canadian Journal of Zoology with Michelle Duong and John Millar as co-authors. Ms. Duong collected the field-based seed preference data under my supervision. Dr. Millar contributed to the study design, provided equipment and funding, and contributed editorial comments to the manuscript. A version of Chapter 3 was published in Mammalian Biology with John Millar as a co- author. Dr. Millar contributed to the study design, provided equipment and funding, and contributed editorial comments to the manuscript. A version of Chapter 4 has been submitted for publication to the Journal of Mammalogy with Derek Green and John Millar as co-authors. Mr. Green collected the subalpine fir seed data under my supervision, and contributed editorial comments on the manuscript. Dr. Millar contributed to the study design, provided equipment and funding, and contributed editorial comments to the manuscript. A combined version of Chapters 5 and 6 has been accepted for publication in the Journal of Animal Ecology with John Millar as a co-author. Dr. Millar contributed to the study design, provided access to long-term datasets (pre-2007), provided equipment and funding, and contributed editorial comments to the manuscripts. v Acknowledgments First, I would like to thank Dr. Jack Millar for his guidance and support over the last five years. It was quite serendipitous that I ended up working with Jack, and I could not have asked for a better graduate school experience. He has been the ideal supervisor, pushing me when I needed it (“Well, have you got the answer yet?”), but leaving me to my own devices otherwise. While I was always interested in ecological research, it was Jack who inspired a real passion for natural history and the mountains in this “city kid”. I sincerely appreciate his open-door policy, lightning-fast turn-around of written drafts, and generosity when it came to purchasing research equipment. Above all, I have to thank Jack for encouraging me to transfer into the PhD program, and providing me with an incredible diversity of research, teaching, and travel opportunities; and of course, the bags of farm-fresh vegetables I would periodically find on my desk. He has built an impressive professional legacy over his career, and I am honoured to be his final graduate student. I would also like to thank the past and present members of my advisory committee, Drs. Robert Scott, David Sherry, and Liana Zanette, for their recommendations and assistance with project ideas, statistical analyses, manuscripts, and reference letters. Special thanks also goes to Dr. Robert Bailey, who taught me to embrace statistics as my friend. Dr. Mark Bernards and the members of his lab, especially Dimitre Ivanov and Pooja Sharma, were very patient and helpful when I had questions about analytical chemistry. Mark’s enthusiasm for the project was contagious, and kept me motivated through the numerous times we had to start over in the lab. Even though the plant secondary compound work did not end up in this dissertation, it was an invaluable research experience, and one that I will integrate into my future work. Thanks also to Natalie Westwood for assistance in the lab. vi I spent five incredible field seasons out in the Kananaskis Valley, but I certainly could not have completed a project of this scale without assistance, or without the friendships, cold beers, and random adventures with so many people – mousers, honorary mousers, and other field station/Calgary/Edmonton dwellers. I am grateful to all of you, especially my actual field assistants; I pushed them very hard, but hopefully also taught them a few things along the way. While there were occasional complaints about the early mornings, late evenings, and endless seed sorting, I was very fortunate to have a skilled, motivated, and “character”- filled group of coworkers every summer. Thanks to Tracy Flach, Dr. Yeen Ten Hwang, Kurt Illerbrun, Chey Peterson, Edith Pounden, Kari Richardson, Jennifer Smith, Crisia Tabacaru, Michelle Duong, Andrew Geary, Eddie Liu, Laura Barclay, Craig Harding, Chris Ibbotson, Rachel White, Amanda Doyle, Derek Green, Grant Hilts, Sarah McPike, Lindsey Valliant, Beate Zein, Ashlynn Gomes, Lila Karolak, and Liz Morrison. I also have to thank the staff at the Kananaskis Field Station/University of Calgary Biogeoscience Institute for their logistical support and friendship
Recommended publications
  • Mammalian Chromosomes Volume8
    AN ATLAS OF MAMMALIAN CHROMOSOMES VOLUME8 T.C.HSU KURT BENIRSCHKE Section of Cytology, Department Department of Obstetries of Biology, The University of & Gynecology, School of Medicine, Texas M. D. Anderson Hospital and University of California, San Diego, Tumor Institute, Houston, Texas La Jolla, California SPRINGER SCIENCE+BUSINESS MEDIA, LLC 1974 ~ All rights reserved, especially that of translation into foreign languages. It is also forbidden to reproduce this book, either whole or in part, by photomechanical means (photostat, microfilm, and/or microcard) or by other procedure without written permission from Springer Science+Business Media, LLC Library of Congress Catalog Card Number 67-19307 © 1974 by Springer Science+Business Media New York Originally published by Springer-Verlag New York Heidelberg Berlin in 1974 ISBN 978-1-4684-7995-9 ISBN 978-1-4615-6432-4 (eBook) DOI 10.1007/978-1-4615-6432-4 Introduction to Volume 8 This series of Mammalian Chromosomes started before the advent of many revolutionary procedures for chromosome characterization. During the last few years, conventional karyotyping was found to be inadequate because the various ban ding techniques ofIer much more precise information. Unfortu­ nately, it is not feasible to induce banding from old slides, so that wh at was reported with conventional straining methods must remain until new material can be obtained. We present, in this volume, a few of these. We consider presenting the ban ding patterns of a few more important species such as man, mouse, rat, etc., in our future volumes. As complete sets (male and female ) of karyotypes are more and more diffi­ cult to come by, we begin to place two species in the same genus on one plate.
    [Show full text]
  • Emory Health
    Health care for the working poor 8 After cancer, what next? 12 Smallpox chronicles 25 PATIENT CARE, RESEARCH, AND EDUCATION FROM Spring 2010 THE WOODRUFF HEALTH SCIENCES CENTER Why do voles fall in love? And what that means for human health. 2 FEATURE LISTENING TO THE HORMONES CouplingBy Sylvia Wrobel Monogamy—vole style What does love—or at least monogamy—have to do with autism, schizophrenia, and other conditions with deficits in socialcial awarenessawareness and attachment? Larry Young (left) believes his quirky little prairie voles hold some answers. Once mating is over, fidelity does not come naturally to the vast majority of species.. Even within species whose members do engage in social bonding, like humans, some individuals are better at it than others. The popular question was, “Why do voles fall In the 1990s, Young (William P. Timmie in love?” The answer, said the scientists, was that oxytocin created lifelong attachment. Professor of Psychiatry at Emory and chief of behavioral neuroscience at Yerkes National Primate Research Center) and Tom Insel (then director of Yerkes and now director of the National Institute of Mental Health) created a scientific and media storm when they reported that the surprisingly ubiquitous and long-lasting monogamy exhibited by a species of voles is attributable to hormones. The popular ques- tion was, “Why do voles fall in love?” The answer, said the scientists, was that oxytocin—the same hormone released during labor, delivery, and breast feeding in humans and that promotes mother-infant bonding— creates the female prairie vole’s lifelong attachment to her male partner.
    [Show full text]
  • Microtus Ochrogaster) from the Southern Plains of Texas and Oklahoma
    OCCASIONAL PAPERS Museum of Texas Tech University Number 235 5 May 2004 HISTORICAL ZOOGEOGRAPHY AND TAXONOMIC STATUS OF THE PRAIRIE VOLE (MICROTUS OCHROGASTER) FROM THE SOUTHERN PLAINS OF TEXAS AND OKLAHOMA FREDERICK B. STANGL, JR., JIM R. GOETZE, AND KIMBERLY D. SPRADLING The prairie vole (Microtus ochrogaster) today is with distinct cranial characters andpale pelage colora­ considered a species ofthe Great Plains, whose range tion, they described M. o. taylori. extends from the interior grasslands ofsouthern Canada to central Oklahoma and the northernTexas Panhandle, Choate and Williams (1978) perfonned a mor­ and is generally bordered by the Rocky Mountains to phometric analysis ofthe prairie vole, which included the west and the eastern deciduous woodlands (Bee et material reported onby Hibbard and Rinker (1943) as al. 1981; Hall 1981; Hoffmann andKoeppl 1985; Caire M. o. taylori. Each of their external body measure­ et al. 1990; Stalling 1990). Duringthe late Pleistocene, ments and four of the seven cranial characters (skull the species occurred throughout much ofTexas, leav­ length, zygomatic breadth, mastoidal breadth, and least ing fossil evidence as far south as the Edwards Pla­ interorbital breadth) exhibited significant geographic teau and parts ofthe GulfCoast (Dalquest and Schultz variation. While no geographic patterns were evident 1992; Graham 1987). The species retreated north­ to suggest subspecific levels of differentiation, popu­ ward with the advent ofincreasingly arid climate dur­ lations from the Dakotas to Kansas demonstrated a ing the Holocene. At least one isolated population, M. slight north-to-south elinal increase in size of cranial o. ludovicianus, was stranded during this time, and is characters.
    [Show full text]
  • Young, L.J., & Hammock E.A.D. (2007)
    Update TRENDS in Genetics Vol.23 No.5 Research Focus On switches and knobs, microsatellites and monogamy Larry J. Young1 and Elizabeth A.D. Hammock2 1 Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, 954 Gatewood Road, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA 2 Vanderbilt Kennedy Center and Department of Pharmacology, 465 21st Avenue South, MRBIII, Room 8114, Vanderbilt University, Nashville, TN 37232, USA Comparative studies in voles have suggested that a formation. In male prairie voles, infusion of vasopressin polymorphic microsatellite upstream of the Avpr1a locus facilitates the formation of partner preferences in the contributes to the evolution of monogamy. A recent study absence of mating [7]. The distribution of V1aR in the challenged this hypothesis by reporting that there is no brain differs markedly between the socially monogamous relationship between microsatellite structure and mon- and socially nonmonogamous vole species [8]. Site-specific ogamy in 21 vole species. Although the study demon- pharmacological manipulations and viral-vector-mediated strates that the microsatellite is not a universal genetic gene-transfer experiments in prairie, montane and mea- switch that determines mating strategy, the findings do dow voles suggest that the species differences in Avpr1a not preclude a substantial role for Avpr1a in regulating expression in the brain underlie the species differences in social behaviors associated with monogamy. social bonding among these three closely related species of vole [3,6,9,10]. Single genes and social behavior Microsatellites and monogamy The idea that a single gene can markedly influence Analysis of the Avpr1a loci in the four vole species complex social behaviors has recently received consider- mentioned so far (prairie, montane, meadow and pine voles) able attention [1,2].
    [Show full text]
  • Cestoda: Anoplocephalidae) in the Meadow Vole Microtus Pennsylvanicus, with a Synopsis of Paranoplocehala S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 12-2002 Description of Paranoplocephala etholeni n. sp. (Cestoda: Anoplocephalidae) in the Meadow Vole Microtus pennsylvanicus, with a Synopsis of Paranoplocehala s. l. in Holarctic Rodents Voitto Haukisalmi Finnish Forest Research Institute, [email protected] H. Henttonen Finnish Forest Research Institute J. Niemimaa Finnish Forest Research Institute Robert L. Rausch University of Washington, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Haukisalmi, Voitto; Henttonen, H.; Niemimaa, J.; and Rausch, Robert L., "Description of Paranoplocephala etholeni n. sp. (Cestoda: Anoplocephalidae) in the Meadow Vole Microtus pennsylvanicus, with a Synopsis of Paranoplocehala s. l. in Holarctic Rodents" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 514. https://digitalcommons.unl.edu/parasitologyfacpubs/514 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Haukisalmi, Henttonen, Niemimaa & Rausch in PARASITE (Paris, France) (December 2002) 9(4). Copyright 2002, PRINCEPS Editions. Used by permission. DESCRIPTION OF PARANOPLOCEPHALA ETHOLENI N. SP. {CESTODA: ANOPLOCEPHALIDAE} IN THE MEADOW VOLE MICROTUS PENNSYLVANICUS, WITH A SYNOPSIS OF PARANOPLOCEPHALA S. L. IN HOLARCTIC RODENTS HAUKISALlVll V.*, HENTTONEN H.*, NIEMIMAA].* & RAUSCH RL.** Summary: Resume: DI'SCRIPTION DE PARA.vOFLOCFI'IIAL4 VI! /OLbiV! 1\.
    [Show full text]
  • Southern Bog Lemming, Synaptomys Cooperi,Andthe Mammals: Their Natural History, Classification, and Meadow Vole, Microtus Pennsylvanicus,Invirginia
    Synaptomys cooperi (Baird, 1858) SBLE W. Mark Ford and Joshua Laerm CONTENT AND TAXONOMIC COMMENTS There are eight subspecies of the southern bog lem- ming (Synaptomys cooperi) recognized, four of which occur in the South: S. c. gossii, S. c. helaletes, S. c. kentucki, and S. c. stonei (Wetzel 1955, Barbour 1956, Hall 1981, Linzey 1983, Long 1987). However, Whitaker and Hamilton (1998) indicate that S. c. gossii, S. c. kentucki, and S. c. stonei could be referable to S. c. cooperi.The literature was reviewed by Linzey (1983). DISTINGUISHING CHARACTERISTICS The southern bog lemming is a robust, short-tailed vole with a broad head, small ears, and small eyes. Its measurements are: total length, 119–154 mm; tail, 13–25 mm; hind foot, 16–24 mm; ear, 8–14 mm; weight, 20–50 g. The dental formula for this species is: I 1/1, C 0/0, P 0/0, M 3/3 = 16 (Figure 1). The pel- age is bright chestnut to dark grizzled brown dor- sally, grading into silver grayish white ventrally, with gray to brown feet and tail. The southern bog lemming readily is distinguished from other voles by its short tail (usually less than hind foot length), pres- ence of a shallow longitudinal groove along upper incisors, and deep reentrant angles on molars. See keys for details. CONSERVATION STATUS The southern bog lemming has a global rank of Secure (NatureServe 2007). It is listed as Secure in Virginia and Apparently Secure in Kentucky and Tennessee. It is listed as Vulnerable in North Carolina, Imperiled in Arkansas, and Critically Imperiled in Georgia.
    [Show full text]
  • Meadow Vole Microtus Pennsylvanicus
    meadow vole Microtus pennsylvanicus Kingdom: Animalia FEATURES Phylum: Chordata The meadow vole’s body fur is black with red hairs Class: Mammalia scattered throughout. The belly hair is black with a Order: Rodentia white tip. The feet are black. The tail is heavily furred and shorter than the head-body length (three Family: Cricetidae and one-half to five inches) although still relatively ILLINOIS STATUS long for a vole. Its ears are rounded and almost hidden in the hair. common, native BEHAVIORS The meadow vole may be found in the northern one-half of Illinois. It lives in moist areas with grasses or sedges, marshes, along streams, in wet fields, along lake shores and in gardens. The meadow vole feeds on grasses and other green plants, bulbs, grains and seeds. It is active during the day or night. This vole uses underground burrows and above ground runways through vegetation for travel routes. Mating occurs in the spring and fall. adult specimen Females less than one month old may breed and produce offspring about three weeks later. The average litter size is four or five. Young are born helpless in a nest of dry grass. They develop quickly and are ready to live on their own in about two weeks. Mortality of young voles is very high. ILLINOIS RANGE adult © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © L. L. Master, Mammal Images Library of the American Society of Mammalogists © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois.
    [Show full text]
  • Proceedings of the Indiana Academy of Science (1988) Volume 98 P
    Proceedings of the Indiana Academy of Science (1988) Volume 98 p. 553-559. BARN OWL FOOD HABITS IN INDIANA Allen R. Parker Indiana Department of Natural Resources Division of Fish & Wildlife Nongame and Endangered Wildlife Program 300 West First St. Bloomington, Indiana 47403 ABSTRACT: Pellets from barn owls {Tyto alba) were col- lected in Indiana from 1983 to 1987. Skulls, mandibles, palate fragments, and non-principal prey parts were identified and tallied. Prey biomass was estimated using weights from the literature. Of the 12,905 prey items identified, 66% of them were voles {Microtus spp. and Synaptomys cooperi). Major prey buffer species were deer mice {Peromyscus sp.) and short-tailed shrews {Blarina brevicauda). Regional examination of food habits was conducted on 16 areas, and vole dependence ranged from 31% to 80%. The meadow vole {M. pennsylvanicus) was the most important prey species in all but the southwestern coun- ties, where the prairie vole {M. ochrogaster) was most impor- tant. Seasonally, food habits varied only slightly. The mean weight per prey item was lower in Indiana than were those reported for other States. INTRODUCTION The common barn owl {Tyto alba pratincola) is on endangered species lists in 7 midwestern states (Rosenburg, 1986), and its decline has been attributed to changes in agricultural practices (Colvin, 1985). Past research in the Ohio Valley and the eastern United States has revealed that the meadow vole {Microtus penn- sylvanicus) is the primary prey of the barn owl (Colvin and McLean, 1986; Pearson and Pearson, 1947; Rosenburg, 1986). Analysis of small collections of barn owl pellets from Indiana supported this finding (Castrale, et al., 1983).
    [Show full text]
  • Moles, Shrews, Mice and More
    Moles, RESEARCHERS FOCUS IN ON Shrews, NEW HAMPSHIRE’S MANY SMALL Mice MAMMALS and more 8 NovemberSeptember / / December October 2016 2016 by ELLEN SNYDER mall mammals – those weighing less than six ounces – are a surprisingly diverse group. In New England, they include mice, voles, bog lemmings, flying squir- Srels, chipmunks, moles and shrews. Researchers study small mammals because they are common, widespread, diverse, easily handled and reproduce often. My father, Dana Snyder, was one of those researchers. In the 1960s, when I was just four years old, he began a long-term study of the ecology of the eastern chipmunk in the Green Mountains of southern Vermont. Our summer camping trips to his study site infused me with a fondness for small mammals, especially chipmunks. Chipmunks are one of those small mammals that both entertain and annoy. Colorful in their brown and white stripes, they are lively and active during the day. When star- tled, they emit a high-pitched “chip” before darting off to a hideout; their low chuck, chuck, chuck is a common summer sound in our woods. They can stuff huge numbers of seeds into their cheek pouches. Despite their prevalence, chipmunks live solitary lives and are highly territorial. In winter, they take a long nap, waking occasionally to eat stored seeds or emerge above ground on a warm winter day. When I was in elementary school, my dad brought home an orphaned flying squirrel. We were enthralled with its large, dark eyes and soft fur. It would curl up in my shirt pocket, and I took it to school for show-and-tell.
    [Show full text]
  • Habitat, Home Range, Diet and Demography of the Water Vole (Arvicola Amphibious): Patch-Use in a Complex Wetland Landscape
    _________________________________________________________________________Swansea University E-Theses Habitat, home range, diet and demography of the water vole (Arvicola amphibious): Patch-use in a complex wetland landscape. Neyland, Penelope Jane How to cite: _________________________________________________________________________ Neyland, Penelope Jane (2011) Habitat, home range, diet and demography of the water vole (Arvicola amphibious): Patch-use in a complex wetland landscape.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa42744 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ Habitat, home range, diet and demography of the water vole(Arvicola amphibius): Patch-use in a complex wetland landscape A Thesis presented by Penelope Jane Neyland for the degree of Doctor of Philosophy Conservation Ecology Research Team (CERTS) Department of Biosciences College of Science Swansea University ProQuest Number: 10807513 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Hantaviruses: a Global Disease Problem
    Synopses Hantaviruses: A Global Disease Problem Connie Schmaljohn* and Brian Hjelle† *United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA; and †University of New Mexico, Albuquerque, New Mexico, USA Hantaviruses are carried by numerous rodent species throughout the world. In 1993, a previously unknown group of hantaviruses emerged in the United States as the cause of an acute respiratory disease now termed hantavirus pulmonary syndrome (HPS). Before then, hantaviruses were known as the etiologic agents of hemorrhagic fever with renal syndrome, a disease that occurs almost entirely in the Eastern Hemisphere. Since the discovery of the HPS-causing hantaviruses, intense investigation of the ecology and epidemiology of hantaviruses has led to the discovery of many other novel hantaviruses. Their ubiquity and potential for causing severe human illness make these viruses an important public health concern; we reviewed the distribution, ecology, disease potential, and genetic spectrum. The genus Hantavirus, family Bunyaviridae, previously known as Korean hemorrhagic fever, comprises at least 14 viruses, including those that epidemic hemorrhagic fever, and nephropathia epi- cause hemorrhagic fever with renal syndrome demica (4). Although these diseases were recog- (HFRS) and hantavirus pulmonary syndrome nized in Asia perhaps for centuries, HFRS first (HPS) (Table 1). Several tentative members of the came to the attention of western physicians when genus are known, and others will surely emerge approximately 3,200 cases occurred from 1951 to as their natural ecology is further explored. 1954 among United Nations forces in Korea (2,5). Hantaviruses are primarily rodent-borne, although Other outbreaks of what is believed to have been other animal species har-boring hantaviruses HFRS were reported in Russia in 1913 and 1932, have been reported.
    [Show full text]
  • Kangaroo Rat and Pocket Mouse
    Shrew Family Order Rodentia (Soricoidae) masked shrew vagrant shrew water shrew Sorex cinereus Sorex vagrans Sorex palustris grassland streambank streambank Mouse, Vole, Rats, and Muskrat (Cricetidae) meadow vole long-tailed vole heather vole Microtus pennsylvanicu Microtus longicaudus Phenacomys intermedius grassland streambank streambank/grassland/mountain Gapper’s red-backed vole deer mouse Western harvest mouse Clethrionomys gapperi Peromycus maniculatus Reithrodontomys megalotis mountain mountain/streambank grassland bushy-tailed woodrat Neotoma cinerea mountain rock mouse Northern grasshopper mouse Peromyscus difficilis Onychomys leucogaster mountain grassland Jumping Mouse Kangaroo Rat and Family Pocket Mouse silky pocket mouse (Zapodidae) (Heteromyidae) Perognathus flavus desert Western jumping mouse Ord’s kangaroo rat Apache pocket mouse Zapus princeps Dipodomys ordii Perognathus apache streambank desert mountain 1:1 0 1 2 3 4 5 6 inches 1 - Rodents Tracks are actual size. Pocket Gopher Porcupine Family Order Rodentia Family (Erethizonidae) (Geomyidae) Beaver Family (Castoridae) porcupine Erethizon dorsatum mountains/grasslands scale 1:3 beaver Castor canadensis streams/lakes/wetlands Northern pocket gopher scale 1:3 Thomomys talpoides grasslands scale 1:1 1:3 0 1 2 3 4 5 6 inches Squirrel Family (Sciuridae) least chipmunk Colorado chipmunk chicaree Eutamias minimus Eutamias quadrivittatus Tamiasciurus douglassi mountain/grassland mountain forest Abert’s squirrel Sciurus aberti kaibabensis mountain/forest rock ground squirrel golden-mantled ground Spermophilus variegatus squirrel mountain Spermophilus lateralis streambank yellow-bellied marmot Gunnison’s prairie dog thirteen-lined ground squirrel Marmota flaviventris Cynomys gunnisoni Spermophilus tridecemlineatus mountain/rockslide grassland grassland 1:1 0 1 2 3 4 5 6 inches 2 - Rodents Rodentia tracks vary in size. Sciuridae tracks are actual size.
    [Show full text]