Baitfish Primer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Percina Copelandi) in CANADA
Canadian Science Advisory Secretariat Central and Arctic, and Quebec Regions Science Advisory Report 2010/058 RECOVERY POTENTIAL ASSESSMENT OF CHANNEL DARTER (Percina copelandi) IN CANADA Channel Darter (Percina copelandi) Figure 1. Distribution of Channel Darter in Canada. © Ellen Edmondson Context : The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) assessed the status of Channel Darter (Percina copelandi) in April 1993. The assessment resulted in the designation of Channel Darter as Threatened. In May 2002, the status was re-examined and confirmed by COSEWIC. This designation was assigned because the species exists in low numbers where found, and its habitat is negatively impacted by siltation and fluctuations in water levels. Subsequent to the COSEWIC designation, Channel Darter was included on Schedule 1 of the Species at Risk Act (SARA) when the Act was proclaimed in June 2003. A species Recovery Potential Assessment (RPA) process has been developed by Fisheries and Oceans Canada (DFO) Science to provide the information and scientific advice required to meet the various requirements of the SARA, such as the authorization to carry out activities that would otherwise violate the SARA as well as the development of recovery strategies. The scientific information also serves as advice to the Minister of DFO regarding the listing of the species under SARA and is used when analyzing the socio-economic impacts of adding the species to the list as well as during subsequent consultations, where applicable. This assessment considers the scientific data available with which to assess the recovery potential of Channel Darter in Canada. SUMMARY In Ontario, the current and historic Channel Darter distribution is limited to four distinct areas of the Great Lakes basin: Lake St. -
C:\Fish\Eastern Sand Darter Sa.Wpd
EASTERN SAND DARTER STATUS ASSESSMENT Prepared by: David Grandmaison and Joseph Mayasich Natural Resources Research Institute University of Minnesota 5013 Miller Trunk Highway Duluth, MN 55811-1442 and David Etnier Ecology and Evolutionary Biology University of Tennessee 569 Dabney Hall Knoxville, TN 37996-1610 Prepared for: U.S. Fish and Wildlife Service Region 3 1 Federal Drive Fort Snelling, MN 55111 January 2004 NRRI Technical Report No. NRRI/TR-2003/40 DISCLAIMER This document is a compilation of biological data and a description of past, present, and likely future threats to the eastern sand darter, Ammocrypta pellucida (Agassiz). It does not represent a decision by the U.S. Fish and Wildlife Service (Service) on whether this taxon should be designated as a candidate species for listing as threatened or endangered under the Federal Endangered Species Act. That decision will be made by the Service after reviewing this document; other relevant biological and threat data not included herein; and all relevant laws, regulations, and policies. The result of the decision will be posted on the Service's Region 3 Web site (refer to: http://midwest.fws.gov/eco_serv/endangrd/lists/concern.html). If designated as a candidate species, the taxon will subsequently be added to the Service's candidate species list that is periodically published in the Federal Register and posted on the World Wide Web (refer to: http://endangered.fws.gov/wildlife.html). Even if the taxon does not warrant candidate status it should benefit from the conservation recommendations that are contained in this document. ii TABLE OF CONTENTS DISCLAIMER................................................................... -
Tennessee Fish Species
The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7 -
Eastern Sand Darter (Ammocrypta Pellucida) in Canada (Ontario Populations) for the Period 2012 - 2017
Species at Risk Act Recovery Strategy Report Series Report on the Progress of Recovery Strategy Implementation for the Eastern Sand Darter (Ammocrypta pellucida) in Canada (Ontario Populations) for the Period 2012 - 2017 Eastern Sand Darter 2018 c Report on the Progress of Recovery Strategy Implementation for the Eastern Sand Darter 2018 Recommended Citation: Fisheries and Oceans Canada. 2018. Report on the Progress of Recovery Strategy Implementation for the Eastern Sand Darter (Ammocrypta pellucida) in Canada (Ontario Populations) for the Period 2012 – 2017. Species at Risk Act Recovery Strategy Report Series. Fisheries and Oceans Canada, Ottawa. v + 33 p. For copies of the progress report, or for additional information on species at risk, including COSEWIC Status Reports, recovery strategies, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk Public Registry. Cover illustration: Alan Dextrase, Ontario Ministry of Natural Resources and Forestry Également disponible en français sous le titre « Rapport sur les progrès de la mise en œuvre du programme de rétablissement du dard de sable (Ammocrypta pellucida) au Canada, populations de l’Ontario pour la période 2012-2017» © Her Majesty the Queen in Right of Canada, represented by the Minister of Fisheries and Oceans Canada, 2018. All rights reserved. ISBN 978-0-660-24756-4 Catalogue no. En3-4/122-1-2018E-PDF Content (excluding the cover illustration) may be used without permission, with appropriate credit to the source. i Report on the Progress of Recovery Strategy Implementation for the Eastern Sand Darter 2018 Preface The federal, provincial, and territorial government signatories under the 3Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. -
Ruffe (Gymnocephalus Cernua) Ecological Risk Screening Summary
U.S. Fish and Wildlife Service Ruffe (Gymnocephalus cernua) Ecological Risk Screening Summary US Fish and Wildlife Service, February 2011 Revised, July 2014 Revised, June 2015 Photo: USFWS 1 Native Range, and Status in the United States Native Range From Fuller et al. (2014): “Northern Europe and Asia (Berg 1949; Holcik and Hensel 1974; Wheeler 1978; Page and Burr 1991).” Status in the United States From Fuller et al. (2014): “The ruffe was first identified by Wisconsin DNR in specimens collected from the St. Louis River at the border of Minnesota and Wisconsin in 1987 (Pratt 1988; Pratt et al. 1992; Czypinski et al. 1999, 2000, 2001, 2003). Following that report, reexamination of archived samples revealed misidentified larval specimens of ruffe had been collected from the same area in 1986 (Pratt 1988). The ruffe subsequently spread into Duluth Harbor in Lake Superior and several tributaries of the lake (Underhill 1989; Czypinski et al. 1999, 2000, 2004; Scheidegger, pers. comm.; J. Slade, pers. comm.). It is found in the Amnicon, Flag, Iron, Middle, Raspberry, and Bad rivers, Chequamegon Bay, and Apostle Islands National Lakeshore in Wisconsin (Czypinski et al. 1999, 2000, 2001, 2003, 2004; Tilmant 1999). In August 1994, it was found in Saxon Harbor, Wisconsin, and in the upper peninsula of Michigan at the mouths of the Black and Ontonagon rivers (K. Kindt, pers. comm.). In the lower Peninsula of Michigan along Lake Huron, the first three specimens were caught at the mouth of the Thunder Bay River in August 1995 (K. Kindt, pers. comm.). This species has also been collected in Michigan in Lake Michigan, Lake Superior, Torch Lake, Little Bay de Noc in Escanaba, Big Bay de Noc, Misery River, Ontonagon River, Thunder Bay, and Sturgeon River Sloughs (Czypinski et al. -
Low-Head Dams Facilitate Round Goby Neogobius Melanostomus Invasion
Biol Invasions (2018) 20:757–776 https://doi.org/10.1007/s10530-017-1573-3 ORIGINAL PAPER Low-head dams facilitate Round Goby Neogobius melanostomus invasion Dustin Raab . Nicholas E. Mandrak . Anthony Ricciardi Received: 9 July 2017 / Accepted: 23 September 2017 / Published online: 3 October 2017 Ó Springer International Publishing AG 2017 Abstract Round Goby Neogobius melanostomus inclusion of both reservoir-associated abiotic variables invasion of the Grand River (Ontario, Canada) and Round Goby abundance as model terms. To presents an opportunity to assess the role of abiotic determine establishment potential of the uninvaded gradients in mediating the establishment and impact of reach immediately upstream, four environmental nonnative benthic fishes in rivers. In this system, habitat characteristics were used in discriminant sequential low-head dams delineate uninvaded and function analysis (DFA) to predict three potential invaded river reaches and create upstream gradients of outcomes of introduction: non-invaded and either increasing water velocity. We hypothesized that flow lower or higher Round Goby abundance (low and high refugia created by impounded reservoirs above low- invasion status, respectively) than the median number head dams enhance local Round Goby abundance. of Round Goby at invaded sites. Our DFA function Round Goby influence on the native fish community correctly classified non-invaded and high-abundance was determined by variance partitioning, and we used invasion status sites [ 85% of the time, with lower generalized additive models to identify small-bodied (73%) success in classifying low-abundance invasion benthic fish species most likely to be impacted by status sites, and the spatial pattern of our results Round Goby invasion. -
A Synopsis of the Biology and Life History of Ruffe
J. Great Lakes Res. 24(2): 170-1 85 Internat. Assoc. Great Lakes Res., 1998 A Synopsis of the Biology and Life History of Ruffe Derek H. Ogle* Northland College Mathematics Department Ashland, Wisconsin 54806 ABSTRACT. The ruffe (Gymnocephalus cernuus), a Percid native to Europe and Asia, has recently been introduced in North America and new areas of Europe. A synopsis of the biology and life history of ruffe suggests a great deal of variability exists in these traits. Morphological characters vary across large geographical scales, within certain water bodies, and between sexes. Ruffe can tolerate a wide variety of conditions including fresh and brackish waters, lacustrine and lotic systems, depths of 0.25 to 85 m, montane and submontane areas, and oligotrophic to eutrophic waters. Age and size at maturity dif- fer according to temperature and levels of mortality. Ruffe spawn on a variety ofsubstrates, for extended periods of time. In some populations, individual ruffe may spawn more than once per year. Growth of ruffe is affected by sex, morphotype, water type, intraspecific density, and food supply. Ruffe feed on a wide variety of foods, although adult ruffe feed predominantly on chironomid larvae. Interactions (i.e., competition and predation) with other species appear to vary considerably between system. INDEX WORDS: Ruffe, review, taxonomy, reproduction, diet, parasite, predation. INTRODUCTION DISTRIBUTION This is a review of the existing literature on Ruffe are native to all of Europe except for along ruffe, providing a synopsis of its biology and life the Mediterranean Sea, western France, Spain, Por- history. A review of the existing literature is tugal, Norway, northern Finland, Ireland, and Scot- needed at this time because the ruffe, which is na- land (Collette and Banarescu 1977, Lelek 1987). -
Eurasian Ruffe (Gymnocephalus Cernua), Native to Northern Europe and Asia, Have Threatened the Great Lakes and Surrounding States Since the Late 1980S
State of Michigan’s Status and Strategy for Eurasian Ruffe Management Scope Invasive Eurasian ruffe (Gymnocephalus cernua), native to northern Europe and Asia, have threatened the Great Lakes and surrounding states since the late 1980s. The goals of this document are to: • Summarize the current understanding level of the biology and ecology of Eurasian ruffe. • Summarize the current management options for Eurasian ruffe in Michigan. • Identify possible future directions of Eurasian ruffe management in Michigan. Biology and Ecology I. Identification Eurasian ruffe, also known as blacktail Gary Cholwek – National Biological Service or river ruffe, is a member of genus Gymnocephalus within Percidae. Eurasian ruffe is a small, aggressive, benthic fish native to Europe and Asia. The species resemble yellow perch with distinct walleye markings (McLean 1997). The Eurasian ruffe can be distinguished from other perch by their large, jointed dorsal fin composed of 11 to 16 spines with rows of dark spots between each spine. Adult ruffe are typically five to six inches long with large individuals rarely exceeding 10 inches. They have a small, downturned mouth, lack scales on their head, and are slimy when handled (McLean 1997). Eurasian ruffe have two dorsal fins, one spiny (anterior) and one soft (posterior), and are commonly mistaken for troutperch, which have only a single dorsal fin. Their coloration consists of an olive-brown dorsal surface, pale sides, and a yellow underside (Fuller 2014, Hajjar 2002). Eurasian ruffe have two ventral fins with sharp spines on the leading edges; the anterior fin has only one spine where the posterior fin has two spines. -
Biological Resources
BIOLOGICAL RESOURCES Wildlife The French Creek watershed contains a wealth of wildlife resources, both aquatic and terrestrial. There is an abundance of species of special concern, considered rare, threatened, or endangered in the state and in the nation, and also numerous game and non-game species. This amazing biodiversity leads to an enormous array of wildlife viewing and outdoor recreation opportunities. Perhaps more importantly, is the significance and importance this exceptional biodiversity places on conservation initiatives in the French Creek watershed. Terrestrial Mammals There are 63 extant species of mammals in the Commonwealth with another 10 species considered either uncertain or extirpated within Pennsylvania (Merritt, 1987). Fifty species of mammals have ranges that overlap with the French Creek watershed (Appendix F). No rare, threatened, or endangered mammals are listed for the French Creek watershed, although a few have general ranges that include the watershed. There have been unconfirmed reports of river otters (Lutra canadensis) seen on French Creek. These individuals, once common in the watershed, may be making their way back to French Creek due to reintroduction efforts in western New York and on the Allegheny River in Pennsylvania. Many of the mammals once common in the watershed and in other areas of the state have been lost due to the decline of large expanses of forested areas, these include the marten (Martes americana), fisher (Martes pennanti), and mountain lion (Felis concolor). The white-tailed deer (Odocoileus virginianus), eastern chipmunk (Tamias striatus), woodchuck (Marmota monax), striped skunk (Mephitis mephitis), porcupine (Erethizon dorsatum), eastern cottontail rabbit (Sylvilagus floridanus), short-tailed shrew (Blarina brevicauda), little brown bat (Myotis lucifugus), raccoon (Procyon lotor), muskrat (Ondatra zibethica), opossum (Didelphis marsupialis), and beaver (Castor canadensis), are some of the more common mammals found in the French Creek watershed (French Creek Project, web). -
Comparative Growth, Reproduction, Habitat and Food Utilization Of
Conservation Biology Research Grant Program Nongame Wildlife Program Division of Ecological Services Minnesota Department of Natural Resources COMPARATIVE GROWTH, REPRODUCTION, HABITAT AND FOOD UTILIZATION 0F DARTERS Of THE ST. CROIX RIVER DRAINAGE FINAL REPORT Submitted to: Lee Ann Pfannmuller Nongame Wildlife Program Minnesota Department of Natural Resources Box 7, 500 Lafayette Road St. Paul, Minnesota 55146 Submitted by: Jay T. Hatch, Ph.D. Division of Science, Business, and Mathematics General College University of Minnesota 216 Pillsbury Dr. SE Minneapolis, MN 55455 February 24, 1986 Introduction One of the most abundant and ubiquitous groups of nongame fishes found in Minnesota is the darter group (Percidae: Etheostomatini). These lively and colorful fishes inhabit nearly all of our streams and rivers and many of our lakes (Eddy and Underhill, 1974). We know in general that darters play an important role in the trophic structure of stream ecosystems (Cummins 1980), and we know that some species are important indicators of general water quality (Gerking 1945; Smith 1971; Pflieger 1975; Burr 1980; Karr 1981). Yet, we know very little about the specific life histories of the darters of our state, and we know even less about how their resource utilization patterns change with changes in habitat and community structure. To date, only three life history studies have been cared out on Minnesota darter populations. Erickson (1977) studied the banded darter (Etheostoma zonale) in the Cannon River; Coon (1982) studied several aspects of the comparative ecology of the rainbow (E. coeruleum), fantail (E. flabellare) and Johnny (E. nigrum) darters in the Root River; and Hatch (1982, 1986) studied the gilt darter (Percina evides) in the St. -
Perch and Darter (Family Percidae) Diversity in North Carolina
Perch and Darter (Family Percidae) Diversity in North Carolina Our native species of darters and perches are just as brightly colored as many fishes one would find in a pet shop, yet few people are aware of their existence. There are 38 species of darters and perches in North Carolina (Table 1), including several species found in only one river basin and at least two species, which may be re-named or split into additional species (Tracy et al. 2020). Two species have been extirpated from our state – Blueside Darter, Etheostoma jessiae, and Sickle Darter, Percina williamsi. You might have heard people calling them simply darters, Raccoon Perch, Ringed Perch, Lake Perch, Redfin Perch, Jack Salmon, Pike, Pike Perch, Jackfish, Walleyed Pike, River Slicks, or many other colloquial names. But the American Fisheries Society has officially accepted common names (Page et al. 2013) (Table 1) and each species has a scientific (Latin) name (Table 1; Appendix 1). Table 1. Species of darters and perches found in North Carolina. Scientific Name/ Scientific Name/ American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Etheostoma acuticeps - Sharphead Darter Etheostoma thalassinum - Seagreen Darter Etheostoma blennioides - Greenside Darter Etheostoma vitreum - Glassy Darter Etheostoma brevispinum - Carolina Fantail Darter Etheostoma vulneratum - Wounded Darter Etheostoma chlorobranchium - Greenfin Darter Etheostoma zonale - Banded Darter Etheostoma collis - Carolina Darter Perca flavescens - Yellow Perch Etheostoma -
Farm Field Guide
FARM FIELD GUIDE to species at risk in southern Ontario Rivers & Streams A wildlife guide for farmers Content Introduction 2 What are Rivers and Streams? 4 8 10 State of Rivers and Streams 6 How to use this guide 7 Your Observations are Important 8 Species - Redside Dace 10 Eastern Sand Darter 12 Grass Pickerel 14 Northern Brook Lamprey 16 20 Wavy-rayed lampmussel 18 Rainbow Mussel 20 Queensnake 22 Spiny Softshell 24 Northern Map Turtle 26 Bald Eagle 28 Bank Swallow 30 Eastern Musk Turtle 32 Kidneyshell Mussel 34 30 Silver Shiner 34 Channel Darter 35 Hungerford’s Crawling Water Beetle 35 Laura’s Clubtail 36 Riverine Clubtail 36 American Water-willow 37 Heart-leaved Plantain 37 35 1012 14 16 26 18 2216 24 26 28 32 34 34 35 36 36 37 37 An identification guide for species at risk that use rivers and streams in Ontario Rivers and streams are defined as fast moving or flowing bodies of water. Rivers and streams have been an important part of Ontario’s development and growth providing many services to its inhabitants. Most importantly, these waterways are a valuable source of drinking water. Did you know the average person requires about 360 litres of water per day for daily activities? These waterways provide many valuable services to the agricultural community, including water sources for both growing food and livestock, and recreational opportunities such as fishing or paddling. However, many rivers and streams in Ontario have been diverted and deteriorated by humans. As this trend continues, pressure is placed on the plants and animals that depend on these habitats for survival.