Living with Earthquake Hazards in South and South East Asia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Seismicity of the Earth 1900–2010 THRUST B' Profiles of Earthquake and Volcanoes Are PAMIR Constructed from the Mapped Data
U.S. Department of the Interior Open-File Report 2010–1083–J U.S. Geological Survey Hindu Kush Focus Inset Map Version 1.1, revised January 28, 2014 70° E 71° E 72° E 73° E 74° E 75° E 76° E 39° N 39° N DEPTH PROFILE EXPLANATION Seismicity of the Earth 1900–2010 THRUST B' Profiles of earthquake and volcanoes are PAMIR constructed from the mapped data. Locations Himalaya and Vicinity of the profile intersection with the surface are MAIN TAJIKISTAN CHINA drawn in the map and labeled to coincide 1 1 1 1 1 1 2 3 2 2 4 2 with the profile label. Box defines extent of Compiled by Bethan Turner, Jennifer Jenkins, Rebecca Turner, Amy L. Parker, Alison Sinclair, Sian Davies, Gaven P. Hayes, Antonio Villaseñor, Richard L. Dart, Arthur C. Tarr, Kevin P. Furlong, and Harley M. Benz earthquakes included in the profile. Length of the profile graphic is the same as in the map. 2013 Distance in kilometers from the trench axis is indicated in the X direction, depth in 68° 70° 72° 74° 76° 78° 80° 82° 84° 86° 88° 90° 92° 94° 96° 98° 100° 102° 104° 106° 108° 110° 38° N kilometers is indicated in the Y direction. Lake amir There is no vertical exaggeration. See 46° Yinchuan 38° N P Balkhash Urumqi Explanation color key. Not all earth layers, earthquake depths or magnitude, are visible obaoho on every profile. Chai W 36° B X Distance (km) X' KAZAKHSTAN -500 -400 -300 -200 -100 0 1911 1932 AFGHANISTAN TRENCH AXIS 0 A' KARAKORAM FAULT 44° Almaty 1920 1927 37° N -100 37° N -200 Dzhambul Bishkek HAIYUAN FAULT Ysk Köl Lake -300 TALAS-FERGHANA FAULT Xining Lanzhou -
Exelon Generation
Victoria County Station ESP Application Part 2 — Site Safety Analysis Report Subsection 2.4.6 Table of Contents Section Title Page 2.4.6 Probable Maximum Tsunami Hazards ............................................................ 2.4.6-1 2.4.6.1 Probable Maximum Tsunami ................................................................ 2.4.6-1 2.4.6.2 Historical Tsunami Record ................................................................... 2.4.6-4 2.4.6.3 Source Generator Characteristics ........................................................ 2.4.6-4 2.4.6.4 Tsunami Analysis ................................................................................. 2.4.6-5 2.4.6.5 Tsunami Water Levels ......................................................................... 2.4.6-5 2.4.6.6 Hydrography and Harbor or Breakwater Influences on Tsunami ......... 2.4.6-8 2.4.6.7 Effects on Safety-Related Facilities ...................................................... 2.4.6-8 2.4.6.8 References ........................................................................................... 2.4.6-8 2.4.6-i Revision 0 Victoria County Station ESP Application Part 2 — Site Safety Analysis Report Subsection 2.4.6 List of Tables Number Title 2.4.6-1 Summary of Historical Tsunami Runup Events in the Texas Gulf Coast 2.4.6-ii Revision 0 Victoria County Station ESP Application Part 2 — Site Safety Analysis Report Subsection 2.4.6 List of Figures Number Title 2.4.6-1 Location Map Showing the Extent of the Geological Provinces in the Gulf of Mexico Basin (Reference 2.4.6-1) 2.4.6-2 (A) Landslide Area (Purple Shade) Offshore of the Rio Grande River (East Breaks Slump) and Other Portions of the Gulf of Mexico, (B) An Enlarged View of Landslide Zones Near Sigsbee Escarpment (Reference 2.4.6-1) 2.4.6-3 The Caribbean Plate Boundary and its Tectonic Elements (Reference 2.4.6-1) 2.4.6-4 Results of Hydrodynamic Simulation for the Currituck Slide, (a) Maximum Wave Height During 100 min. -
GIS and Emergency Management in Indian Ocean Earthquake/Tsunami Disaster
GIS and Emergency Management in Indian Ocean Earthquake/Tsunami Disaster ® An ESRI White Paper • May 2006 ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL [email protected] • WEB www.esri.com Copyright © 2006 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts and Legal Services Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. -
Operational Users Guide for the Pacific Tsunami Warning and Mitigation System (PTWS)
Intergovernmental Oceanographic Commission technical series 87 Operational Users Guide for the Pacific Tsunami Warning and Mitigation System (PTWS) January 2009 UNESCO 87 Operational Users Guide for the Pacific Tsunami Warning and Mitigation System (PTWS) January 2009 UNESCO 2009 IOC Technical Series No. 87 Paris, 2 February 2009 English only EXECUTIVE SUMMARY The Pacific Tsunami Warning and Mitigation System (PTWS) was founded in 1965 by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, following 5 major destructive Pacific tsunamis in the previous 19 years, to help reduce the loss of life and property from this natural hazard. The Operational Users Guide for the Pacific Tsunami Warning and Mitigation System (PTWS) provides a summary of the tsunami message services currently provided to the PTWS by the U.S. National Oceanic and Atmospheric Administration’s (NOAA) Pacific Tsunami Warning Center (PTWC), the NOAA West Coast / Alaska Tsunami Warning Center (WC/ATWC) and the Japan Meteorological Agency’s (JMA) Northwest Pacific Tsunami Advisory Center (NWPTAC). This 2009 version, formerly called the Communications Plan for the Tsunami Warning System in the Pacific, has been completely revised to include descriptions of the operations of these three Centres in the main body, with additional technical information given in Annexes. The Guide is intended for use by the responsible agencies within each country of the PTWS who are recipients of tsunami messages from the international Centres. Section 1 provides the objectives and purposes of the Guide. Section 2 describes the administrative procedures, the organizations involved, and how to subscribe to services offered. Section 3 provides an overview of the three operational Centers, while Sections 4-6 describe in detail the services each of them provide. -
Active and Passive Seismic Investigation of Structure of Orogenic Lithosphere in Asia and South America
ACTIVE AND PASSIVE SEISMIC INVESTIGATION OF STRUCTURE OF OROGENIC LITHOSPHERE IN ASIA AND SOUTH AMERICA A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chen Chen January 2015 © 2015 Chen Chen ACTIVE AND PASSIVE SEISMIC INVESTIGATION OF STRUCTURE OF OROGENIC LITHOSPHERE IN ASIA AND SOUTH AMERICA Chen Chen, Ph. D. Cornell University 2015 Asia and South America possess the two iconic orogenic belts – Himalayas and Andes and two largest and highest plateaus – Tibetan Plateau and Puna Plateau on the earth. Their lithospheres were formed under continental-continental collision and ocean-continent subduction regimes respectively. Seismic images of their current lithospheric structure provide key insights into the current stage in their evolutionary process. Lithospheric structure beneath the Tibetan Plateau has been studied using deep seismic reflection profiling since the beginning of the INDEPTH project in 1992. This international effort led by consortium of Chinese and western academic institutions, continued over 25 years in four different phases. Key features spanned by this megatransect include the Main Himalaya Thrust (MHT) at the southern margin of the plateau, crustal seismic bright spots in the south and central part of the plateau, Moho topography across the plateau and especially an abrupt step in the Moho beneath the northeastern margin of the Plateau beneath the Qaidam Basin. A recent reflection profile by the SINOPROBE Project across the Sichuan Basin located at the southeast edge of the Tibetan Plateau, reveals sub-crustal dipping reflectors which are very likely to result from Neo-Proterozoic subduction beneath the Sichuan Basin. -
02.04S.06 Probable Maximum Tsunami
Rev. 01 15 Jan 2008 STP 3 & 4 Final Safety Analysis Report 2.4S.6 Probable Maximum Tsunami The following site-specific supplement addresses the probable maximum tsunami. Probable maximum tsunami flooding events are discussed in Subsection 2.4S.2. 2.4S.6.1 Probable Maximum Tsunami Previous estimates of “worst-case” tsunami flooding along the Texas Gulf Coast have been made for near-field and far-field (i.e., a tsunami that occurs from a source over a 1000 km away) sources. These previous estimates have been based on both historical tsunamis and simulated events. With respect to near-field sources, the National Oceanic and Atmospheric Administration’s (NOAA) West Coast and Alaska Tsunami Warning Center has estimated “worst-case” events by using a two-dimensional depth- integrated hydrodynamic model developed at the University of Alaska, Fairbanks (Reference 2.4S.6-1). The model was run on a Cray X1 supercomputer and included four “worst-case” scenarios based on geoseismic events originating in the Caribbean Sea and the Gulf of Mexico: (1) A moment magnitude (Mw) 9.0 in the Puerto Rico trench (66W, 18N) (2) A Mw 8.2 in the Caribbean Sea (85W, 21N) (3) A Mw 9.0 in the North Panama Deformed Belt (66W, 12N) (4) A hypothetical scenario off the coast of Veracruz, Mexico (95W, 20N) For all near-field modeled scenarios, the peak shoreline wave height along the Gulf coast was less than 0.35 meters. The peak shoreline wave height for the first scenario in the vicinity of STP 3 & 4 was predicted as being between 0.04 meters and 0.06 meters (Figure 2.4S.6-1). -
Curriculum Vitae
UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO SANTA BARBARA • SANTA CRUZ ROLAND BÜRGMANN DEPARTMENT OF EARTH AND PLANETARY SCIENCE TELEPHONE: (510) 643-9545 389 McCONE HALL FACIMILE: (510) 643-9980 BERKELEY, CALIFORNIA 94720-4767 E-Mail: [email protected] July 1, 2021 CURRICULUM VITAE EDUCATION: • Stanford University, Stanford, California, Ph.D., Geological Sciences, 1993. • University of Colorado, Boulder, Colorado, M.S., Structural Geology, 1989. • Universität Tübingen, Germany, Vordiplom, Geology, Paleontology and Mineralogy, 1987. RESEARCH INTERESTS: Active tectonics and crustal rheology. Using the Global Positioning System and Synthetic Aperture Radar Interferometry to measure crustal deformation near active faults, volcanoes and landslides. Develop mechanical models of crustal deformation through the earthquake cycle along major fault zones to better understand the rheology and deformation mechanisms in the Earth's lithosphere. PROFESSIONAL EXPERIENCE: Since 06/06 Professor, Department of Earth and Planetary Science, UC Berkeley 01/01-06/06 Associate Professor, Dept. of Earth and Planetary Science, UC Berkeley 07/98-12/00 Assistant Professor, Department of Geology and Geophysics, UC Berkeley 01/95-06/98 Assistant Professor, Department of Geology, UC Davis 10/93-12/94 Postdoctoral Scholar, Department of Geophysics, Stanford University 06/91-09/91 Student Employee at U.S. Geological Survey, Menlo Park 09/89-06/91 Teaching Assistant, Department -
Tsunami Plan
EMERGENCY PREPAREDNESS DIVISION CITY OF MANHATTAN BEACH EMERGENCY RESPONSE PLAN FOR TSUNAMI OPERATIONS CONTENTS Page 1. Situation.......................................................................................................................3 The Threat ............................................................................................................3 Federal, State, County Response.........................................................................5 Assumptions .........................................................................................................5 2. Mission ........................................................................................................................6 3. Concept of Operations.................................................................................................6 Lead Responsibilities ............................................................................................6 Phases of Operational Activities ...........................................................................6 Public Awareness & Education Campaigns ........................................................7 4. Execution.....................................................................................................................8 a. City Departments Responsibilities ...................................................................8 b. Plan Updates and Maintenance.......................................................................8 c. Emergency Status............................................................................................9 -
Tsunami Early Warning Systems in the Indian Ocean and Southeast Asia
ESCAP is the regional development arm of the United Nations and serves as the main economic and social development centre for the United Nations in Asia and the Pacific. Its mandate is to foster cooperation between its 53 members and 9 associate members. ESCAP provides the strategic link between global and country-level programmes and issues. It supports Governments of the region in consolidating regional positions and advocates regional approaches to meeting the region’s unique socio-economic challenges in a globalizing world. The ESCAP office is located in Bangkok, Thailand. Please visit our website at www.unescap.org for further information. The shaded areas of the map indicate ESCAP members and associate members. Tsunami Early Warning Systems in the Indian Ocean and Southeast Asia Report on Regional Unmet Needs United Nations New York, 2009 Economic and Social Commission for Asia and the Pacific Tsunami Early Warning Systems in the Indian Ocean and Southeast Asia Report on Regional Unmet Needs The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has been issued without formal editing. The research for this publication was carried out by Sheila B. Reed, Consultant. The publication may be reproduced in whole or in part for education or non-profit purposes without special permission from the copyright holder, provided that the source is acknowl- edged. -
Evaluation of Tsunami Risk in the Lesser Antilles
Natural Hazards and Earth System Sciences (2001) 1: 221–231 c European Geophysical Society 2001 Natural Hazards and Earth System Sciences Evaluation of tsunami risk in the Lesser Antilles N. Zahibo1 and E. N. Pelinovsky2 1Universite´ Antilles Guyane, UFR Sciences Exactes et Naturelles Departement´ de Physique, Laboratoire de Physique Atmospherique´ et Tropicale 97159 Pointe-a-Pitre` Cedex, Guadeloupe (F.W.I.) 2Laboratory of Hydrophysics and Nonlinear Acoustics, Institute of Applied Physics, Russian Academy of Sciences, 46 Uljanov Street, 603950 Nizhny Novgorod, Russia Received: 27 July 2001 – Revised: 11 February 2002 – Accepted: 14 February 2002 Abstract. The main goal of this study is to give the prelimi- to the subduction of the American plate under the Caribbean nary estimates of the tsunami risks for the Lesser Antilles. plate at a rate of about 2 cm/year. The subduction angle is We investigated the available data of the tsunamis in the stronger in the center of the arc (Martinique, 60◦) than in the French West Indies using the historical data and catalogue of north (Guadeloupe, 50◦) and the south. This type of subduc- the tsunamis in the Lesser Antilles. In total, twenty-four (24) tion is considered as an intermediate type between the two tsunamis were recorded in this area for last 400 years; six- fundamental types (BRGM, 1990): teen (16) events of the seismic origin, five (5) events of vol- canic origin and three (3) events of unknown source. Most of – The “Chili” type, characterized by a high speed of con- the tsunamigenic earthquakes (13) occurred in the Caribbean, vergence, a mode of compression in the overlaping plate and three tsunamis were generated during far away earth- and a strong coupling between the two plates. -
Tsunami Hazards in Oregon
Oregon Geology Fact Sheet Tsunami Hazards in Oregon What is a tsunami? A tsunami is a series of ocean waves most often generated by disturbances of the sea floor during shallow, undersea earth- quakes. Less commonly, landslides and volcanic eruptions can trigger a tsunami. In the deep water of the open ocean, tsunami waves can travel at speeds up to 800 km (500 miles) per hour and are imperceptible to ships because the wave height is typi- cally less than a few feet. As a tsunami approaches the coast it slows dramatically, but its height may multiply by a factor of 10 or more and have cata- strophic consequences to people living at the coast. As a result, The December 26, 2004, Indian Ocean tsunami strikes Khao Lak, Thailand. A wall of water people on the beach, in low-lying areas of the coast, and near dwarfs a tourist and boats on the beach. (Photo source: John Jackie Knill – family photo/AP) bay mouths or tidal flats face the greatest danger from tsunamis. A tsunami can be triggered by earthquakes around the Pacific Ocean including undersea earthquakes with epicenters located only tens of miles offshore the Oregon coast. Over the last cen- tury, wave heights of tsunamis in the Pacific Ocean have reached up to 13.5 m (45 ft) above the shoreline near the earthquake source. In a few rare cases, local conditions amplified the height of a tsunami to over 30 m (100 ft). What is the difference between a Cascadia (local) tsunami and a distant tsunami? An earthquake on the Cascadia Subduction Zone, a 960-km- long (600 mile) earthquake fault zone that sits off the Pacific Northwest coast, can create a Cascadia tsunami that will reach the Oregon coast within 15 to 20 minutes.