And Maintenance of Peripheral T Cells Locus Controls IL-7 Receptor

Total Page:16

File Type:pdf, Size:1020Kb

And Maintenance of Peripheral T Cells Locus Controls IL-7 Receptor An Enhancer of the IL-7 Receptor α-Chain Locus Controls IL-7 Receptor Expression and Maintenance of Peripheral T Cells This information is current as Akifumi Abe, Shizue Tani-ichi, Soichiro Shitara, Guangwei of October 2, 2021. Cui, Hisataka Yamada, Hitoshi Miyachi, Satsuki Kitano, Takahiro Hara, Ryo Abe, Yasunobu Yoshikai and Koichi Ikuta J Immunol 2015; 195:3129-3138; Prepublished online 2 September 2015; doi: 10.4049/jimmunol.1302447 Downloaded from http://www.jimmunol.org/content/195/7/3129 Supplementary http://www.jimmunol.org/content/suppl/2015/09/01/jimmunol.130244 http://www.jimmunol.org/ Material 7.DCSupplemental References This article cites 46 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/195/7/3129.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology An Enhancer of the IL-7 Receptor a-Chain Locus Controls IL-7 Receptor Expression and Maintenance of Peripheral T Cells Akifumi Abe,*,† Shizue Tani-ichi,* Soichiro Shitara,*,† Guangwei Cui,*,‡ Hisataka Yamada,x Hitoshi Miyachi,{ Satsuki Kitano,{ Takahiro Hara,* Ryo Abe,‖ Yasunobu Yoshikai,x and Koichi Ikuta* The IL-7R plays critical roles in lymphocyte development and homeostasis. Although IL-7R expression is strictly regulated during lymphocyte differentiation and the immune response, little is known regarding its in vivo regulation. To address this issue, we established a mouse line with targeted deletion of the conserved non-coding sequence 1 (CNS1) element found 3.6 kb upstream of the IL-7Ra promoter. We report that IL-7Ra isexpressednormallyonTandBcellsinthymusandbonemarrowofCNS12/2 mice Downloaded from except for in regulatory T cells. In contrast, these mice show reduced IL-7Ra expression in conventional CD4 and CD8 T cells as well as regulatory T, NKT, and gd T cells in the periphery. CD4 T cells of CNS12/2 mice showed IL-7Ra upregulation in the absence of growth factors and IL-7Ra downregulation by IL-7 or TCR stimulation, although the expression levels were lower than those in control mice. Naive CD4 and CD8 T cells of CNS12/2 mice show attenuated survival by culture with IL-7 and reduced homeostatic proliferation after transfer into lymphopenic hosts. CNS12/2 mice exhibit impaired maintenance of Ag-stimulated T cells. Furthermore, IL-7Ra upregulation by glucocorticoids and TNF-a was abrogated in CNS12/2 mice. This work demon- http://www.jimmunol.org/ strates that the CNS1 element controls IL-7Ra expression and maintenance of peripheral T cells, suggesting differential regu- lation of IL-7Ra expression between central and peripheral lymphoid organs. The Journal of Immunology, 2015, 195: 3129–3138. nterleukin-7, a cytokine essential for lymphocyte develop- IL-7 supports survival and homeostasis of naive and memory ment and homeostasis, controls the survival, proliferation, and T cells (6). IL-7 exerts its effects through interaction with the IL-7R, I differentiation of early T and B cells (1–3) as well as V(D)J which consists of the IL-7R a-chain (IL-7Ra) and a common cy- recombination of the TCRg and IgH loci (4, 5). In the periphery, tokine receptor g-chain. IL-7Ra also dimerizes with the thymic stromal lymphopoietin receptor. IL-7 binding to the IL-7R activates by guest on October 2, 2021 JAK-1 and JAK-3, which then activates STAT5 and PI3K. *Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; †Graduate School of Bio- IL-7Ra expression is dynamically controlled in T and B cell studies, Kyoto University, Kyoto 606-8501, Japan; ‡Graduate School of Medicine, development. During T cell differentiation, IL-7Ra is expressed Kyoto University, Kyoto 606-8501, Japan; xDivision of Host Defense, Network Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka in double-negative (DN) thymocytes, downregulated in double- 812-8582, Japan; {Reproductive Engineering Team, Institute for Virus Research, Kyoto positive (DP) thymocytes, upregulated in single-positive (SP) ‖ University, Kyoto 606-8507, Japan; and Division of Immunobiology, Research Insti- thymocytes, and maintained in naive T cells in the periphery (2, tute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan 7). When naive T cells receive Ag stimuli, the IL-7Ra is down- Received for publication September 12, 2013. Accepted for publication July 28, 2015. regulated in effector T cells (6, 8, 9). However, a small subset of effector T cells, referred to as memory precursor effector cells, This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Scientific Research [C] Grants 25460589 upregulates IL-7Ra and differentiates into memory CD8 T cells [to K.I.] and 26460572 [to S.T.], Scientific Research on Innovative Areas Grants (9). During B cell development, IL-7Ra is expressed on common 25111504 and 15H01153 [to K.I.], and Young Scientists [B] Grants 24790469 [to S.T.] and 24790468 [to T.H.]). This work was also supported by the Platform Project lymphoid progenitors (CLPs) and pro– and pre–B cells and then is for Supporting Drug Discovery and Life Science Research (Platform for Dynamic downregulated during the transition from pre–B to B cells (7, 10, 11). Approaches to Living System) from the Ministry of Education, Culture, Sports, Thus, IL-7Ra expression is precisely regulated during lymphocyte Science and Technology of Japan, a grant from the Fujiwara Memorial Foundation, a grant from the Shimizu Foundation for Immunology and Neuroscience, and by the development and the immune response. BioLegend/TOMY Digital Biology Young Scientist Research Award for 2011. IL-7Ra expression on T cells is regulated at transcriptional Address correspondence and reprint requests to Dr. Koichi Ikuta, Laboratory of levels and suppressed by IL-7 and other prosurvival cytokines, Biological Protection, Department of Biological Responses, Institute for Virus Re- such as IL-2, IL-4, IL-6, and IL-15 (12). Additionally, TCR sig- search, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan. E-mail address: [email protected] naling also represses IL-7Ra transcription (13). Furthermore, both The online version of this article contains supplemental material. glucocorticoids (GC) and TNF-a upregulate IL-7Ra transcription (14–16). Additionally, several transcriptional factors interact with Abbreviations used in this article: cDC, conventional dendritic cell; CLP, common lymphoid progenitor; CNS1, conserved non-coding sequence 1; DN, CD42CD82 the IL-7Ra locus and control its transcription. Two Ets family double-negative; DP, CD4+CD8+ double-positive; ES, embryonic stem; GC, gluco- proteins, PU.1 and GA binding protein a, interact with the IL-7Ra corticoid; GR, glucocorticoid receptor; IEL, intraepithelial lymphocyte; ab IEL, TCRb+ intraepithelial lymphocyte; IHL, intrahepatic lymphocyte; IL-7Ra, IL-7R promoter and are crucial for IL-7Ra transcription in early B and a-chain; pDC, plasmacytoid dendritic cell; rLM-OVA, recombinant Listeria mono- T cells, respectively (17, 18). We previously showed that a con- + + 2 + 2 + cytogenes expressing OVA; SP, CD3 CD4 CD8 or CD3 CD4 CD8 single-posi- served non-coding sequence 1 (CNS1) element found 3.6 kb up- tive; Treg, Foxp3+CD4+ regulatory T cell. stream of the IL-7Ra promoter is a GC-responsive enhancer of the Copyright Ó 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00 IL-7Ra locus in vitro (16). Consistently, a DNase I hypersensitivity www.jimmunol.org/cgi/doi/10.4049/jimmunol.1302447 3130 FUNCTION OF AN IL-7 RECEPTOR LOCUS ENHANCER site was identified 3.8 kb upstream of that promoter (19). Consensus BioLegend (San Diego, CA), and Wako Pure Chemical Industries: CD3ε motifs for NF-kB, the GC receptor (GR), Evi-1, and forkhead (145-2C11), TCRb (H57-597), CD4 (RM4.5), CD8a (53-6.7), CD8b transcription factors are conserved in the CNS1 element, and Foxo1 (H35-17.2), CD25 (7D4), Foxp3 (FJK-165), CD44 (IM7), gdTCR (GL3), NK1.1 (PK136), CD45R/B220 (RA3-6B2), CD43 (S7), BP-1 (6C3), CD24 and Foxp1 interact with the element to control IL-7Ra expression in (30F1), Igm (M41), CD11c (N418), CD11b (M1/70), Gr-1 (RB6-8C5), naive T and early B cells (20–22). However, it is largely unknown TER-119, Sca-1 (E13-161.7), c-Kit (2B8), Thy-1 (53-2.1), IL-7Ra how the element controls IL-7Ra expression during lymphocyte (A7R34), CD45.1 (A20), CD45.2 (104), Ly-6C (HK1.4), IFN-g (XMG1.2), 694 development and the immune response. phosphorylated STAT5 (Tyr ) (47), Bcl-2 (A19-3), annexin V, Ki-67 (SolA15). H-2Kb OVA G4 tetramer–SIIGFEKL-PE was purchased from To determine its function in vivo, we established a mouse line Medical and Biological Laboratories (Nagoya, Japan). Biotinylated mAbs carrying targeted deletion of the CNS1 element and analyzed IL-7Ra were detected with PE-, allophycocyanin-, or PE-Cy7–conjugated streptavidin expression at different differentiation stages. IL-7Ra expression (eBioscience). Viable cells were analyzed with FACSCalibur or FACSCanto was significantly reduced in peripheral T cells of CNS12/2 mice, II flow cytometers (BD Biosciences) with CellQuest and FlowJo software.
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Cd8a (Ly-2) Microbeads Mouse
    CD8a (Ly-2) MicroBeads mouse Order no. 130-049-401 Contents 1.2 Background information 1. Description Mouse CD8a (Ly-2) MicroBeads were developed for positive + 1.1 Principle of the MACS® Separation selection or depletion of mouse CD8a T cells from single-cell suspensions of lymphoid and non-lymphoid tissues or from 1.2 Background information peripheral blood. The CD8a antigen is expressed on most 1.3 Applications thymocytes, almost all cytotoxic T cells and on subpopulations of dendritic cells. CD8a functions as an accessory molecule in 1.4 Reagent and instrument requirements the recognition of MHC class I/peptide complexes by the TCR 2. Protocol heterodimer on cytotoxic CD8a+ T cells. 2.1 Sample preparation 1.3 Applications 2.2 Magnetic labeling + 2.3 Magnetic separation ● Positive selection or depletion of CD8a T cells from lymphoid organs, non-lymphoid tissue, peripheral blood, or in vitro 2.4 Cell separation with the autoMACS® Pro Separator cultured cells. 3. Example of a separation using the CD8a (Ly-2) MicroBeads + ● Isolation of purified CD8 cells for in vitro and in vivo studies 1,2 4. References on protective immune responses against parasites or allergens3, and for adoptive transfer into immunodeficient4,5 and virus infected mice6. + Warnings ● Isolation of highly pure CD8 T cells from CNS of MHV infected 7 Reagents contain sodium azide. Under acidic conditions sodium mice for evaluation of their chemokine expression pattern. azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. 1.4 Reagent and instrument requirements These precautions are recommended to avoid deposits in plumbing ● Buffer: Prepare a solution containing phosphate-buffered where explosive conditions may develop.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Changes in Peripheral and Local Tumor Immunity After Neoadjuvant Chemotherapy Reshape Clinical Outcomes in Patients with Breast Cancer Margaret L
    Published OnlineFirst August 21, 2020; DOI: 10.1158/1078-0432.CCR-19-3685 CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY Changes in Peripheral and Local Tumor Immunity after Neoadjuvant Chemotherapy Reshape Clinical Outcomes in Patients with Breast Cancer Margaret L. Axelrod1, Mellissa J. Nixon1, Paula I. Gonzalez-Ericsson2, Riley E. Bergman1, Mark A. Pilkinton3, Wyatt J. McDonnell3, Violeta Sanchez1,2, Susan R. Opalenik1, Sherene Loi4, Jing Zhou5, Sean Mackay5, Brent N. Rexer1, Vandana G. Abramson1, Valerie M. Jansen1, Simon Mallal3, Joshua Donaldson1, Sara M. Tolaney6, Ian E. Krop6, Ana C. Garrido-Castro6, Jonathan D. Marotti7,8, Kevin Shee9, Todd. W. Miller8,9, Melinda E. Sanders2,10, Ingrid A. Mayer1,2, Roberto Salgado4,11, and Justin M. Balko1,2 ABSTRACT ◥ Purpose: The recent approval of anti-programmed death-ligand Results: In non-TNBC, no change in expression of any single 1 immunotherapy in combination with nab-paclitaxel for meta- gene was associated with RFS or OS, while in TNBC upregulation of static triple-negative breast cancer (TNBC) highlights the need to multiple immune-related genes and gene sets were associated with understand the role of chemotherapy in modulating the tumor improved long-term outcome. High cytotoxic T-cell signatures immune microenvironment (TIME). present in the peripheral blood of patients with breast cancer at Experimental Design: We examined immune-related gene surgery were associated with persistent disease and recurrence, expression patterns before and after neoadjuvant chemotherapy suggesting active antitumor immunity that may indicate ongoing (NAC) in a series of 83 breast tumors, including 44 TNBCs, from disease burden. patients with residual disease (RD).
    [Show full text]
  • BTLA−HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a Cona-Induced Hepatitis Model in Zebrafish
    BTLA−HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish This information is current as Wei Shi, Tong Shao, Jiang-yuan Li, Dong-dong Fan, Ai-fu of September 27, 2021. Lin, Li-xin Xiang and Jian-zhong Shao J Immunol published online 27 September 2019 http://www.jimmunol.org/content/early/2019/09/26/jimmun ol.1900458 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/09/26/jimmunol.190045 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 27, 2019, doi:10.4049/jimmunol.1900458 The Journal of Immunology BTLA–HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish Wei Shi,* Tong Shao,* Jiang-yuan Li,* Dong-dong Fan,* Ai-fu Lin,* Li-xin Xiang,* and Jian-zhong Shao*,† The BTLA2HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders.
    [Show full text]
  • Roles of Activating Functions 1 and 2 of Estrogen Receptor Α in Lymphopoiesis
    236 2 Journal of A Andersson et al. ERαAF-1 and ERαAF-2 in 236:2 99–109 Endocrinology ER-mediated immunomodulation RESEARCH Roles of activating functions 1 and 2 of estrogen receptor α in lymphopoiesis Annica Andersson1, Anna E Törnqvist2, Sofia Moverare-Skrtic2, Angelina I Bernardi1, Helen H Farman2, Pierre Chambon3, Cecilia Engdahl1,2, Marie K Lagerquist2, Sara H Windahl2, Hans Carlsten1, Claes Ohlsson2 and Ulrika Islander1 1Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 2Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 3Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, National de la Sante et de la Recherche Medicale, ULP, Collège de France, Illkirch-Strasbourg, France Correspondence should be addressed to A Andersson: [email protected] Abstract Apart from the role of sex steroids in reproduction, sex steroids are also important Key Words regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, f lymphopoiesis but augments B cell function, possibly explaining the different nature of immune f estrogen receptor alpha responses in men and women. Both E2 and selective estrogen receptors modulators f estradiol (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER f selective estrogen bind to coregulators and thus influence target gene transcription and subsequent receptor modulators cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported.
    [Show full text]
  • The VE-Cadherin/Amotl2 Mechanosensory Pathway Suppresses Aortic InAmmation and the Formation of Abdominal Aortic Aneurysms
    The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inammation and the formation of abdominal aortic aneurysms Yuanyuan Zhang Karolinska Institute Evelyn Hutterer Karolinska Institute Sara Hultin Karolinska Institute Otto Bergman Karolinska Institute Maria Forteza Karolinska Institute Zorana Andonovic Karolinska Institute Daniel Ketelhuth Karolinska University Hospital, Stockholm, Sweden Joy Roy Karolinska Institute Per Eriksson Karolinska Institute Lars Holmgren ( [email protected] ) Karolinska Institute Article Keywords: arterial endothelial cells (ECs), vascular disease, abdominal aortic aneurysms Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-600069/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inflammation and the formation of abdominal aortic aneurysms Yuanyuan Zhang1, Evelyn Hutterer1, Sara Hultin1, Otto Bergman2, Maria J. Forteza2, Zorana Andonovic1, Daniel F.J. Ketelhuth2,3, Joy Roy4, Per Eriksson2 and Lars Holmgren1*. 1Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden. 2Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. 3Department of Cardiovascular and Renal Research, Institutet of Molecular Medicine, Univ. of Southern Denmark, Odense, Denmark 4Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm,
    [Show full text]
  • Cd81 Interacts with the T Cell Receptor to Suppress Signaling
    Cd81 Interacts with the T Cell Receptor to Suppress Signaling Safak Isil Cevik1,2, Nazli Keskin1,3, Serkan Belkaya1, Meral Ilcim Ozlu1, Emre Deniz1,3, Uygar Halis Tazebay2, Batu Erman1,3* 1 Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey, 2 Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey, 3 Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey Abstract CD81 (TAPA-1) is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR) and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR), we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP) thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling. Citation: Cevik SI, Keskin N, Belkaya S, Ozlu MI, Deniz E, et al.
    [Show full text]
  • Angiogenic Characteristics of Tumor-Associated Dendritic Cells in Ovarian and Breast Cancer Models
    Angiogenic Characteristics of Tumor-Associated Dendritic Cells in Ovarian and Breast Cancer Models A Thesis Presented to The College of Arts and Sciences Ohio University In Partial Fulfillment of the Requirements for Graduation with Honors in Biological Sciences By Deana Lewis April 2016 Table of Contents Abstract………………………………………………………………………….……i I. Introduction……………………………………………………………….…...…...1 a. General Characteristics of Dendritic Cells………………….………..2 b. Use of Dendritic Cells as Vaccines for Tumor Therapies……….…...5 c. Ovarian and Breast Cancer………………………………….………..9 d. The 4T1 model of Breast Cancer and the ID8 model of Ovarian Cancer………………………………………………………………12 e. Tumor Microenvironment of Ovarian and Breastcancer……….......13 f. Leukocytes as Promoters of Angiogenesis in Cancer…………....…15 g. Characteristics of Tumor-Associated DCs………………………….16 h. Dendritic Cells as a Source of Angiogenic Factors……….….……..17 i. Hypothesis…………………………………………………….…….18 II. Materials and Methods…………………………………………………………..19 a. Reagents for molecular biology…………………………………….19 b. Polymerase Chain Reaction………………………………………...19 c. Gel Analysis of PCR fragments…………………………………….21 d. Reagents for flow cytometry analysis…………………….………...22 e. Flow cytometry analysis procedure………………….……………..22 III. Results………………………………………………………………….……….25 a. Expression of angiogenic molecules by ovarian cancer DCs at the level of RNA…………………………………………………………...…25 b. Analysis of chemokine molecules in DCs recovered from breast cancer tumors (solid tumor model)……………………….......................…29 c.
    [Show full text]
  • Mouse CD Marker Chart Bdbiosciences.Com/Cdmarkers
    BD Mouse CD Marker Chart bdbiosciences.com/cdmarkers 23-12400-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1d CD1.1, CD1.2, Ly-38 Lipid, Glycolipid Ag + + + + + + + + CD104 Integrin b4 Laminin, Plectin + DNAX accessory molecule 1 (DNAM-1), Platelet and T cell CD226 activation antigen 1 (PTA-1), T lineage-specific activation antigen 1 CD112, CD155, LFA-1 + + + + + – + – – CD2 LFA-2, Ly-37, Ly37 CD48, CD58, CD59, CD15 + + + + + CD105 Endoglin TGF-b + + antigen (TLiSA1) Mucin 1 (MUC1, MUC-1), DF3 antigen, H23 antigen, PUM, PEM, CD227 CD54, CD169, Selectins; Grb2, β-Catenin, GSK-3β CD3g CD3g, CD3 g chain, T3g TCR complex + CD106 VCAM-1 VLA-4 + + EMA, Tumor-associated mucin, Episialin + + + + + + Melanotransferrin (MT, MTF1), p97 Melanoma antigen CD3d CD3d, CD3 d chain, T3d TCR complex + CD107a LAMP-1 Collagen, Laminin, Fibronectin + + + CD228 Iron, Plasminogen, pro-UPA (p97, MAP97), Mfi2, gp95 + + CD3e CD3e, CD3 e chain, CD3, T3e TCR complex + + CD107b LAMP-2, LGP-96, LAMP-B + + Lymphocyte antigen 9 (Ly9),
    [Show full text]
  • CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance Via FAK Signaling
    UCSF UC San Francisco Previously Published Works Title CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Permalink https://escholarship.org/uc/item/1fb2d4gg Journal Cell, 182(3) ISSN 0092-8674 Authors Oguri, Yasuo Shinoda, Kosaku Kim, Hyeonwoo et al. Publication Date 2020-08-01 DOI 10.1016/j.cell.2020.06.021 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling Graphical Abstract Authors Yasuo Oguri, Kosaku Shinoda, Hyeonwoo Kim, ..., Suneil K. Koliwad, Bruce M. Spiegelman, Shingo Kajimura Correspondence [email protected] In Brief A subset of adipocyte progenitor cells give rise to beige fat through signaling responses to irisin through the action of specific integrins and the co- receptor CD81. Highlights d Beige fat progenitors are marked by cell surface proteins, PDGFRa, Sca1, and CD81 d Beige APC proliferation is regulated by temperature, genetic background, and aging d CD81 mediates integrin-FAK signaling in response to irisin d CD81 loss causes obesity, insulin resistance, and adipose tissue inflammation Oguri et al., 2020, Cell 182, 1–15 August 6, 2020 ª 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.06.021 ll Please cite this article in press as: Oguri et al., CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling, Cell (2020), https://doi.org/10.1016/j.cell.2020.06.021 ll Article CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling Yasuo Oguri,1,2,3,4,13 Kosaku Shinoda,1,2,3,5,13 Hyeonwoo Kim,6,13 Diana L.
    [Show full text]