1 Integrin Αvβ8 on T Cells Is Responsible for Suppression of Anti
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Cd8a (Ly-2) Microbeads Mouse
CD8a (Ly-2) MicroBeads mouse Order no. 130-049-401 Contents 1.2 Background information 1. Description Mouse CD8a (Ly-2) MicroBeads were developed for positive + 1.1 Principle of the MACS® Separation selection or depletion of mouse CD8a T cells from single-cell suspensions of lymphoid and non-lymphoid tissues or from 1.2 Background information peripheral blood. The CD8a antigen is expressed on most 1.3 Applications thymocytes, almost all cytotoxic T cells and on subpopulations of dendritic cells. CD8a functions as an accessory molecule in 1.4 Reagent and instrument requirements the recognition of MHC class I/peptide complexes by the TCR 2. Protocol heterodimer on cytotoxic CD8a+ T cells. 2.1 Sample preparation 1.3 Applications 2.2 Magnetic labeling + 2.3 Magnetic separation ● Positive selection or depletion of CD8a T cells from lymphoid organs, non-lymphoid tissue, peripheral blood, or in vitro 2.4 Cell separation with the autoMACS® Pro Separator cultured cells. 3. Example of a separation using the CD8a (Ly-2) MicroBeads + ● Isolation of purified CD8 cells for in vitro and in vivo studies 1,2 4. References on protective immune responses against parasites or allergens3, and for adoptive transfer into immunodeficient4,5 and virus infected mice6. + Warnings ● Isolation of highly pure CD8 T cells from CNS of MHV infected 7 Reagents contain sodium azide. Under acidic conditions sodium mice for evaluation of their chemokine expression pattern. azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. 1.4 Reagent and instrument requirements These precautions are recommended to avoid deposits in plumbing ● Buffer: Prepare a solution containing phosphate-buffered where explosive conditions may develop. -
Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Changes in Peripheral and Local Tumor Immunity After Neoadjuvant Chemotherapy Reshape Clinical Outcomes in Patients with Breast Cancer Margaret L
Published OnlineFirst August 21, 2020; DOI: 10.1158/1078-0432.CCR-19-3685 CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY Changes in Peripheral and Local Tumor Immunity after Neoadjuvant Chemotherapy Reshape Clinical Outcomes in Patients with Breast Cancer Margaret L. Axelrod1, Mellissa J. Nixon1, Paula I. Gonzalez-Ericsson2, Riley E. Bergman1, Mark A. Pilkinton3, Wyatt J. McDonnell3, Violeta Sanchez1,2, Susan R. Opalenik1, Sherene Loi4, Jing Zhou5, Sean Mackay5, Brent N. Rexer1, Vandana G. Abramson1, Valerie M. Jansen1, Simon Mallal3, Joshua Donaldson1, Sara M. Tolaney6, Ian E. Krop6, Ana C. Garrido-Castro6, Jonathan D. Marotti7,8, Kevin Shee9, Todd. W. Miller8,9, Melinda E. Sanders2,10, Ingrid A. Mayer1,2, Roberto Salgado4,11, and Justin M. Balko1,2 ABSTRACT ◥ Purpose: The recent approval of anti-programmed death-ligand Results: In non-TNBC, no change in expression of any single 1 immunotherapy in combination with nab-paclitaxel for meta- gene was associated with RFS or OS, while in TNBC upregulation of static triple-negative breast cancer (TNBC) highlights the need to multiple immune-related genes and gene sets were associated with understand the role of chemotherapy in modulating the tumor improved long-term outcome. High cytotoxic T-cell signatures immune microenvironment (TIME). present in the peripheral blood of patients with breast cancer at Experimental Design: We examined immune-related gene surgery were associated with persistent disease and recurrence, expression patterns before and after neoadjuvant chemotherapy suggesting active antitumor immunity that may indicate ongoing (NAC) in a series of 83 breast tumors, including 44 TNBCs, from disease burden. patients with residual disease (RD). -
Integrins: Roles in Cancer Development and As Treatment Targets
British Journal of Cancer (2004) 90, 561 – 565 & 2004 Cancer Research UK All rights reserved 0007 – 0920/04 $25.00 www.bjcancer.com Minireview Integrins: roles in cancer development and as treatment targets 1 ,1,2 H Jin and J Varner* 1John and Rebecca Moores Comprehensive Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0912, USA; 2Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0912, USA The integrin family of cell adhesion proteins promotes the attachment and migration of cells on the surrounding extracellular matrix (ECM). Through signals transduced upon integrin ligation by ECM proteins or immunoglobulin superfamily molecules, this family of proteins plays key roles in regulating tumour growth and metastasis as well as tumour angiogenesis. Several integrins play key roles in promoting tumour angiogenesis and tumour metastasis. Antagonists of several integrins (a5b1, avb3 and avb5) are now under evaluation in clinical trials to determine their potential as therapeutics for cancer and other diseases. British Journal of Cancer (2004) 90, 561 – 565. doi:10.1038/sj.bjc.6601576 www.bjcancer.com & 2004 Cancer Research UK Keywords: angiogenesis; metastasis; apoptosis; integrin a5b1; integrin avb3 During the last 10 years, novel insights into the mechanisms sequences (e.g., integrin a4b1 recognises EILDV and REDV in that regulate cell survival as well as cell migration and invasion alternatively spliced CS-1 fibronectin). Inhibitors of integrin have led to the development of novel integrin-based therapeutics function include function-blocking monoclonal antibodies, pep- for the treatment of cancer. Several integrins play important tide antagonists and small molecule peptide mimetics matrix roles in promoting cell proliferation, migration and survival (reviewed in Hynes, 1992; Cheresh, 1993). -
Cell Adhesion and Angiogenesis
Cell adhesion and angiogenesis. J Bischoff J Clin Invest. 1997;99(3):373-376. https://doi.org/10.1172/JCI119168. Perspective Find the latest version: https://jci.me/119168/pdf Perspectives Series: Cell Adhesion in Vascular Biology Cell Adhesion and Angiogenesis Joyce Bischoff Department of Surgery, Children’s Hospital and Harvard Medical School, Children’s Hospital, Boston, Massachusetts 02115 Introduction and postcapillary venules (3). Thus, the formation of a new mi- Angiogenesis is the growth of new capillary blood vessels from crovessel requires a number of interactions that must be coor- preexisting capillaries and postcapillary venules. This process dinated in a spatially and temporally specified manner. These is critical for normal growth and development and in protec- adhesion events are likely mediated by endothelial cell adhe- tive responses such as wound healing and inflammation. In sion molecules and ECM molecules that provide instructions healthy adults, angiogenesis does not normally occur except in to the endothelial cells as they migrate into the perivascular certain phases of the female reproductive cycle. However, ab- space and assemble into new vessels with surrounding peri- errant angiogenesis can occur in a variety of pathologic set- cytes. tings. These include the neovascularization of solid tumors, the Cell adhesion and endothelial cell growth growth of vessels into the retina in diabetic retinopathy, and the unwanted vessel growth in chronic inflammatory diseases. Adhesion of endothelial cells to ECM and attainment of an The hypothesis that angiogenic diseases, in particular tumor appropriate cellular shape has been known for many years to growth and metastases, may be alleviated by inhibiting the an- be crucial for endothelial cell growth, differentiation, and sur- giogenic responses (1) has prompted many to investigate the vival. -
BTLA−HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a Cona-Induced Hepatitis Model in Zebrafish
BTLA−HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish This information is current as Wei Shi, Tong Shao, Jiang-yuan Li, Dong-dong Fan, Ai-fu of September 27, 2021. Lin, Li-xin Xiang and Jian-zhong Shao J Immunol published online 27 September 2019 http://www.jimmunol.org/content/early/2019/09/26/jimmun ol.1900458 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/09/26/jimmunol.190045 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 27, 2019, doi:10.4049/jimmunol.1900458 The Journal of Immunology BTLA–HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish Wei Shi,* Tong Shao,* Jiang-yuan Li,* Dong-dong Fan,* Ai-fu Lin,* Li-xin Xiang,* and Jian-zhong Shao*,† The BTLA2HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. -
Roles of Activating Functions 1 and 2 of Estrogen Receptor Α in Lymphopoiesis
236 2 Journal of A Andersson et al. ERαAF-1 and ERαAF-2 in 236:2 99–109 Endocrinology ER-mediated immunomodulation RESEARCH Roles of activating functions 1 and 2 of estrogen receptor α in lymphopoiesis Annica Andersson1, Anna E Törnqvist2, Sofia Moverare-Skrtic2, Angelina I Bernardi1, Helen H Farman2, Pierre Chambon3, Cecilia Engdahl1,2, Marie K Lagerquist2, Sara H Windahl2, Hans Carlsten1, Claes Ohlsson2 and Ulrika Islander1 1Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 2Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 3Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, National de la Sante et de la Recherche Medicale, ULP, Collège de France, Illkirch-Strasbourg, France Correspondence should be addressed to A Andersson: [email protected] Abstract Apart from the role of sex steroids in reproduction, sex steroids are also important Key Words regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, f lymphopoiesis but augments B cell function, possibly explaining the different nature of immune f estrogen receptor alpha responses in men and women. Both E2 and selective estrogen receptors modulators f estradiol (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER f selective estrogen bind to coregulators and thus influence target gene transcription and subsequent receptor modulators cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. -
Integrin Activity 7Β , and 3Β , 2 Β Chemoattractant-Stimulated Differential Regulation Of
Differential Regulation of Chemoattractant-Stimulated β2, β3, and β7 Integrin Activity This information is current as Chanchal Sadhu, Boris Masinovsky and Donald E. Staunton of September 26, 2021. J Immunol 1998; 160:5622-5628; ; http://www.jimmunol.org/content/160/11/5622 Downloaded from References This article cites 24 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/160/11/5622.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. b b Differential Regulation of Chemoattractant-Stimulated 2, 3, b and 7 Integrin Activity Chanchal Sadhu,1 Boris Masinovsky, and Donald E. Staunton Leukocyte adhesion to endothelium and extravasation are dynamic processes that require activation of integrins. Chemoattrac- tants such as IL-8 and FMLP are potent activators of leukocyte integrins. To compare the chemoattractant-stimulated activation a b a b a b of three integrins, 4 7, L 2, and V 3, in the same cellular context, we expressed an IL-8 receptor (IL-8RA) and FMLP receptor a b a b (FPR) in the lymphoid cell line JY. -