Rural Water and Sanitation Assessing Impacts Policy and Operations Evaluation Department
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Module 1 Basics of Water Supply System
Module 1 BASICS OF WATER SUPPLY SYSTEM Training Module for Local Water and Sanitation Management Maharashtra Jeevan Pradhikaran (MJP) CEPT University 2012 Basics of Water Supply System- Training Module for Local Water and Sanitation Management CONTENT Introduction 3 Module A Components of Water Supply System 4 A1 Typical village/town Water Supply System 5 A2 Sources of Water 7 A3 Water Treatment 8 A4 Water Supply Mechanism 8 A5 Storage Facilities 8 A6 Water Distribution 9 A7 Types of Water Supply 10 Worksheet Section A 11 Module B Basics on Planning and Estimating Components of Water Supply 12 B1 Basic Planning Principles of Water Supply System 13 B2 Calculate Daily Domestic Need of Water 14 B3 Assess Domestic Waste Availability 14 B4 Assess Domestic Water Gap 17 B5 Estimate Components of Water Supply System 17 B6 Basics on Calculating Roof Top Rain Water Harvesting 18 Module C Basics on Water Pumping and Distribution 19 C1 Basics on Water Pumping 20 C2 Pipeline Distribution Networks 23 C3 Type of Pipe Materials 25 C4 Type of Valves for Water Flow Control 28 C5 Type of Pipe Fittings 30 C6 Type of Pipe Cutting and Assembling Tools 32 C7 Types of Line and Levelling Instruments for Laying Pipelines 34 C8 Basics About Laying of Distribution Pipelines 35 C9 Installation of Water Meters 42 Worksheet Section C 44 Module D Basics on Material Quality Check, Work Measurement and 45 Specifications in Water Supply System D1 Checklist for Quality Check of Basic Construction Materials 46 D2 Basics on Material and Item Specification and Mode of 48 Measurements Worksheet Section D 52 Module E Water Treatment and Quality Control 53 E1 Water Quality and Testing 54 E2 Water Treatment System 57 Worksheet Section E 62 References 63 1 Basics of Water Supply System- Training Module for Local Water and Sanitation Management ABBREVIATIONS CPHEEO Central Public Health and Environmental Engineering Organisation cu. -
Design and Production of Drinking-Water Supply Network
OUR EXPERT ASSESSMENT DESIGN AND PRODUCTION OF A DRINKING-WATER SUPPLY NETWORK Especially committed to fighting water related diseases and unsanitary conditions, SOLIDARITES INTERNATIONAL (SI) has been involved in the field of access to drinking water and sanitation for almost 35 years. The annual number of deaths caused by these diseases has risen to 2.6 million, making it one of the world’s leading causes of death; amongst these victims, 1.8 million children, aged less than 15, still succumb... Today, when more than a billion people are still deprived of access to drinking water and permanently exposed to water-related diseases, the right to drinking water remains a vital concern in developing countries. In this regard, drinking-water supply networks represent quite a relevant technical solution for supplying water to refugees, as well as to dense populations and areas with high population growth. In order to further advance technical and socioeconomic diagnoses, SOLIDARITES INTERNATIONAL has led many projects, sometimes lasting years, in partnership with institutions and legitimate operators from the water sector. Hydraulic components and civil engineering relating to rehabilitation, growth and the construction of infrastructure are inseparable from the accompanying social measures, which involve placing sustainability, with the concerted management of water services and the participation of the community, at the heart of the process. Repairing, renovating or building a drinking-water network is a relevant ANALYSING AND ADAPTING technical response when the humanitarian emergency situation requires the re-establishment of the water supply and following the very first emergency TO COMPLEX measures (tanks, mobile treatment units). -
Lesson 3 - Water and Sewage Treatment
Unit: Chemistry D – Water Treatment LESSON 3 - WATER AND SEWAGE TREATMENT Overview: Through notes, discussion and research, students learn about how water and sewage are treated in rural and urban areas. Through discussion and online research, the sources, safety, treatment and cost of bottled water are considered. Using this information, students then share their views on bottled water. Suggested Timeline: 2 hours Materials: Watery Facts (Teacher Support Material) Water and Sewage Treatment (Teacher Support Material) A Closer Look at Water Treatment – Teacher Key (Teacher Support Material) All Tapped Out? – A Look At Bottled Water (Teacher Support Material) materials for bottled water demonstration: - plastic cups - 3 or more brands of bottled water - a sample of municipal tap water - a sample of local well water Water and Sewage Treatment (Student Handout – Individual) Water and Sewage Treatment (Student Handout – Group) A Closer Look at Water Treatment (Student Handout) All Tapped Out? – A Look At Bottled Water (Student Handout) student access to computers with the Internet and speakers Method: INDIVIDUAL FORMAT: 1. Have students read and complete the questions on ‘Water and Sewage Treatment’ (Student Handout – Individual). 2. Using computers with Internet access and speakers, allow students to research answers to questions on ‘A Closer Look at Water Treatment’ (Student Handout) 3. If possible, use one or more of the ideas on ‘All Tapped Out? – A Look At Bottled Water’ (Teacher Support Material) to spark students’ interest in the issues associated with bottled water. 4. Using computers with Internet access, have students complete the research on bottled water on ‘All Tapped Out? – A Look At Bottled Water’ (Student Handout). -
Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering
water Article Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering Slobodan P. Simonovic Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; [email protected]; Tel.: +1-519-661-4075 Received: 29 March 2020; Accepted: 20 April 2020; Published: 24 April 2020 Abstract: Global change, that results from population growth, global warming and land use change (especially rapid urbanization), is directly affecting the complexity of water resources management problems and the uncertainty to which they are exposed. Both, the complexity and the uncertainty, are the result of dynamic interactions between multiple system elements within three major systems: (i) the physical environment; (ii) the social environment; and (iii) the constructed infrastructure environment including pipes, roads, bridges, buildings, and other components. Recent trends in dealing with complex water resources systems include consideration of the whole region being affected, explicit incorporation of all costs and benefits, development of a large number of alternative solutions, and the active (early) involvement of all stakeholders in the decision-making. Systems approaches based on simulation, optimization, and multi-objective analyses, in deterministic, stochastic and fuzzy forms, have demonstrated in the last half of last century, a great success in supporting effective water resources management. This paper explores the future opportunities that will utilize advancements in systems theory that might transform management of water resources on a broader scale. The paper presents performance-based water resources engineering as a methodological framework to extend the role of the systems approach in improved sustainable water resources management under changing conditions (with special consideration given to rapid climate destabilization). -
Concerns About Surface Water As a Drinking Water Source
Concerns About Surface Water NEW YORK STATE as a Drinking Water Source DEPARTMENT OF HEALTH The New York State Department of Health wants to remind people that there are risks from using water from any surface water source as drinking water, unless that water is properly filtered and disinfected. Water from rivers, lakes, ponds and streams can contain bacteria, parasites, viruses and possibly other contaminants. To make surface water fit to drink, treatment is required. Remember, we use our drinking water in many different ways. We use it as a beverage, but also make ice cubes, mix baby formula, wash fruits and vegetables, and brush our teeth. If the water is contaminated, this may put you at risk. Depending on the kind of contamination, it may also be a concern to wash dishes, wash hands, shower or bathe. Public water systems are required to treat, disinfect and monitor water quality for their customers. A public water treatment system is well designed and employs trained technicians to test and maintain water quality. If you are not on a public water system and use surface water as your water supply source, please contact your local health department* for advice. They can talk to you about developing another source of drinking water in your area. If there are no other choices, then they can discuss the treatment options for your surface water source. In the meantime, avoid the use of surface water for your drinking water needs. You should use bottled water or disinfect small batches of water by bringing it to a rolling boil for one – two minutes. -
Elements for an Outline of a Review of Water Supply Reliability Estimation Related to the Sacramento-San Joaquin Delta Delta Independent Science Board
DRAFT Elements for an Outline of a Review of Water Supply Reliability Estimation related to the Sacramento-San Joaquin Delta Delta Independent Science Board 7/6/2019 Summary findings and recommendations Section outlines 1) Introduction a) Purpose: Uses of water supply reliability estimates– questions asked b) Scope: Urban, agricultural, environmental, regulatory perspectives, regional systems c) Incomplete inventory of reliability estimation efforts d) Changing challenges and questions (Portfolios in reliability, Water quality, Environmental water reliability, Climate change, Conflicts in water management) e) Structure of report 2) Metrics of water supply reliability 3) Scientific underpinning of trends in water supply reliability a) Portfolios in reliability b) Water quality c) Environmental water reliability d) Climate change e) Multiple objectives and conflicts in water management 4) Developing and communicating insights for managers and policymakers a) Long-term education and insights for policy-makers b) Transparency c) Potential for decision analysis 5) Quality control in reliability estimation a) Peer review b) Common standards or expectations? c) Common efforts (1) Land use, inflows, groundwater modeling, portfolio characterization, etc. (2) Common water accounting 6) Priorities for future studies a) Ecological and environmental water reliability b) Incorporating climate change and sea level rise c) FIRO d) Fragility analysis 7) Conclusions and Recommendations Delta ISB Meeting Materials (7/11/19) 1 DRAFT References Appendices -
Short-Term Water Management Decisions
Short-Term Water Management Decisions User Needs for Improved Climate, Weather, and Hydrologic Information Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) January 2013 Technical Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Short-Term Water Management Decisions: 5b. GRANT NUMBER User Needs for Improved Climate, Weather, and Hydrologic Information 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER David Raff, Levi Brekke, Kevin Werner, Andy Wood, and Kathleen White 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Corps of Engineers Bureau of Reclamation CWTS 2013-1 National Oceanic and Atmospheric Administration 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. -
Federally Supported Water Supply and Wastewater Treatment Programs
Federally Supported Water Supply and Wastewater Treatment Programs Updated May 3, 2019 Congressional Research Service https://crsreports.congress.gov RL30478 Federally Supported Water Supply and Wastewater Treatment Programs Summary For more than four decades, Congress has authorized and refined several programs to help communities address water supply and wastewater problems. The agencies that administer these programs differ in multiple ways. In terms of funding mechanisms, projects developed by the Bureau of Reclamation (Reclamation) and the U.S. Army Corps of Engineers (USACE) typically require direct, individual project authorizations from Congress. In contrast, standing program authorizations provide project funding for other agencies, including the Department of Agriculture (USDA), the U.S. Environmental Protection Agency (EPA), the Department of Commerce, and the Department of Housing and Urban Development (HUD). The key practical difference is that with the individual project authorizations, there is no predictable assistance or even guarantee of funding after a project is authorized, because funding must be secured each year in the congressional appropriations process. The programs, on the other hand, have set program criteria, are generally funded from year to year, and provide a process under which project sponsors compete for funding. In terms of scope and mission, the primary responsibilities of USACE are to maintain inland navigation, provide for flood and storm damage reduction, and restore aquatic ecosystems, while EPA’s mission relates to protecting public health and the environment. The Department of Commerce and HUD focus on community and economic development. Likewise, the specific programs—while all address water supply and wastewater treatment to some degree—differ in important respects. -
A Practical Guide to Implementing Integrated Water Resources Management and the Role for Green Infrastructure”, J
A Practical Guide to Implementing Integrated Water Resources Management & the Role of Green Infrastructure Prepared for: Prepared for: Funded by: Prepared by: May 2016 ACKNOWLEDGEMENTS Environmental Consulting & Technology, Inc. (ECT), wishes to extend our sincere appreciation to the individuals whose work and contributions made this project possible. First of all, thanks are due to the Great Lakes Protection Fund for funding this project. At Great Lakes Commission, thanks are due to John Jackson for project oversight and valuable guidance, and to Victoria Pebbles for administrative guidance. At ECT, thanks are due to Sanjiv Sinha, Ph.D., for numerous suggestions that helped improve this report. Many other experts also contributed their time, efforts, and talent toward the preparation of this report. The project team acknowledges the contributions of each of the following, and thanks them for their efforts: Bill Christiansen, Alliance for Water Efficiency James Etienne, Grand River Conservation Christine Zimmer, Credit Valley Conservation Authority Authority Cassie Corrigan, Credit Valley Conservation Melissa Soline, Great Lakes & St. Lawrence Authority Cities Initiative Wayne Galliher, City of Guelph Clifford Maynes, Green Communities Canada Steve Gombos, Region of Waterloo Connie Sims – Office of Oakland County Water Julia Parzens, Urban Sustainability Directors Resources Commissioner Network Dendra Best, Wastewater Education For purposes of citation of this report, please use the following: “A Practical Guide to Implementing -
Public Water Supply Frequently Asked Questions
Q: Who can I contact about my private Public Water Supply well (individual domestic well)? Private wells are not considered public water Frequently Asked Questions supplies and therefore are not regulated as such by DEQ’s Water Quality Division. If you would Q: What is a Public Water Supply? like to have water samples from your private A public water supply (PWS) system is any system providing water for well analyzed by DEQ’s State Environmental human consumption through pipes or other constructed conveyances, Laboratory, you can call (866) 412-3057 for if such system has at least fifteen (15) service connections or regularly available private well water quality tests and serves an average of at least twenty-five (25) individuals daily at least prices. For additional information regarding sixty (60) days per year, whether receiving payment for same or not. private wells, you can call the Private Well Multi-family dwellings, manufactured home communities, mobile Owner Hotline at (855) 420-9355 or visit home parks, recreational vehicle (RV) parks, and correctional facilities, http://wellowner.org/, sponsored by the National which are constructed, inspected and maintained under a State or locally Groundwater Association. approved plumbing code, purchase water from a permitted water system, do not provide treatment, and do not resell water, are not classified as a Q: How can I find out if my water is in Public Water Supply system. compliance with national primary drinking water regulations? Q: What is a Community Public Water Supply? Contact your public water supply and ask for a Community public water supply means any PWS system that serves at copy of the most recent Consumer Confidence least fifteen (15) service connections used by year-round residents or Report. -
Factors Associated with Use of Improved Water Sources and Sanitation Among Rural Primary Schoolchildren in Pursat Province, Cambodia
SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH FACTORS ASSOCIATED WITH USE OF IMPROVED WATER SOURCES AND SANITATION AMONG RURAL PRIMARY SCHOOLCHILDREN IN PURSAT PROVINCE, CAMBODIA Wee Liang En1 and Goh Lee Gan2 1Yong Loo Lin School of Medicine, 2Division of Family Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore Abstract. Access to improved water supplies and sanitation generally reduces childhood diarrhea incidence. Using a cross-sectional stratified cluster sampling design, interviews were conducted among grade 4-6 primary schoolchildren from 10 primary schools in highland and lowland districts of Pursat Province, Cambodia, in both June (rainy season) and December (dry season) 2009 to deter- mine the demographics and water sources/sanitation used. Parents also recorded any incidents of diarrhea in their children over those months. We explored the sociodemographic factors associated with use of improved water sources/sanita- tion, using mixed effect modelling. Participation was 84.7% (1,101/1,300). About half exclusively used improved water sources but less than 25% had access to improved sanitation during both seasons. Adjusting for clustering within house- holds and within individuals over time, exclusive use of improved water sources and sanitation were associated with the following: dry season, more permanent housing type, family size < 8 members, and higher levels of education. Exclu- sive use of improved sanitation was associated with good hygiene practices and exclusive use of improved water sources was associated with male gender. Ac- cess to improved water sources and sanitation among rural Cambodian primary schoolchildren can be improved, particularly in those with lower socio-economic status. -
Zoonotic Enteric Parasites in Mongolian People, Animals, and the Environment: Using One Health to Address Shared Pathogens
RESEARCH ARTICLE Zoonotic enteric parasites in Mongolian people, animals, and the environment: Using One Health to address shared pathogens 1,2,3☯ 1,4☯ 1,5☯ Amber N. BarnesID *, Anu Davaasuren , Uyanga Baasandavga , Paul 2³ 1³ 2,6,7,8³ M. Lantos , Battsetseg Gonchigoo , Gregory C. GrayID 1 Institute of Veterinary Medicine, Ulaanbaatar, Mongolia, 2 School of Medicine, Duke University, Durham, North Carolina, United States of America, 3 Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America, 4 National Center for Communicable Disease, Ulaanbaatar, a1111111111 Mongolia, 5 National Center for Zoonotic Disease, Ulaanbaatar, Mongolia, 6 Duke Global Health Institute, a1111111111 Duke University, Durham, North Carolina, United States of America, 7 Global Health Research Institute, a1111111111 Duke-Kunshan University, Kunshan, Jiangsu, China, 8 Emerging Infectious Diseases Program, Duke-NUS a1111111111 Medical School, Singapore a1111111111 ☯ These authors contributed equally to this work. ³ PML, BC and GCG also contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Barnes AN, Davaasuren A, Baasandavga U, Lantos PM, Gonchigoo B, Gray GC (2021) Zoonotic enteric parasites in Mongolian people, animals, and the environment: Using One Health to Background address shared pathogens. PLoS Negl Trop Dis Cryptosporidium spp. and Giardia duodenalis are important zoonotic enteric pathogens of 15(7): e0009543. https://doi.org/10.1371/journal. pntd.0009543 One Health concern for humans, animals, and the environment. For this study, we investi- gated parasite prevalence and risk factors among rural, peri-urban, and urban households Editor: Matthew C. Freeman, Emory University, UNITED STATES and environments of Mongolia. Received: October 20, 2020 Methods Accepted: June 7, 2021 This cross-sectional study implemented a household risk factor survey at 250 home sites Published: July 8, 2021 along with sample collection from humans, animals, flies, and drinking water.