I Speculative Physics: the Ontology of Theory And

Total Page:16

File Type:pdf, Size:1020Kb

I Speculative Physics: the Ontology of Theory And Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction by Clarissa Ai Ling Lee Graduate Program in Literature Duke University Date: _______________________ Approved: ___________________________ N. Katherine Hayles, Co-Supervisor ___________________________ Mark C. Kruse, Co-Supervisor ___________________________ Mark B. Hansen ___________________________ Andrew Janiak ___________________________ Timothy Lenoir Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Literature in the Graduate School of Duke University 2014 i v ABSTRACT Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction by Clarissa Ai Ling Lee Graduate Program in Literature Duke University Date:_______________________ Approved: ___________________________ N. Katherine Hayles, Co-Supervisor ___________________________ Mark C. Kruse, Co-Supervisor ___________________________ Mark B. Hansen ___________________________ Andrew Janiak ___________________________ Timothy Lenoir An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Literature in the Graduate School of Duke University 2014 i v Copyright by Clarissa Ai Ling Lee 2014 Abstract The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross- disciplinary interrogations between the sciences and the humanities. I explore the concept of speculation in particle physics and science fiction to examine emergent critical approaches for working in the two areas of literature and physics (the latter through critical science studies), but with the expectation of contributing new insights to media theory, critical code studies, and also the science studies of science fiction. There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the second level of the conversation, theories are produced from a close study of the physics objects as speculative engine for new knowledge generation that are iv then reconceptualized and re-articulated for extrapolation into the speculative ontology of hard science fiction, particularly the hard science fiction written with the double intent of speaking to the science while producing imaginative and socially conscious science through the literary affordances of science fiction. The works of science fiction examined here demonstrate the tension between the internal values of physics in the practice of theory and experiment and questions on ethics, culture, and morality. Nevertheless, the dissertation hopes to show the beginnings of a possibility, through the contentious but generative space provided by speculative physics, to produce more cross-collaborative thinking between physics as represented by the hard sciences, and science fiction representing the objects of literary enterprise and creative evolution. v Dedication In loving memory of my father, Lt Commander Han Seng Lee (Rtd) (AMN), who passed away on July 7, 2012 before he see the fruits of this labor that is completed less than two years after his passing in honor of his memory. I also dedicate this work to my mother and sister, as well as the rest of my extended family and friends for their support through tough times. vi Contents Abstract .........................................................................................................................................iv List of Figures ............................................................................................................................... x Acknowledgements ....................................................................................................................xi 1. Prolog: the Science Studies of High Energy Particle Physics and Hard Science Fiction............................................................................................................................................. 1 2. What is Speculative Physics: Between Theory and Experiment................................... 23 2.1 Speculative Theory......................................................................................................... 45 2.1.1 Speculative Theory and Mathematical Embodiment........................................... 52 2.1.2 The Activism of Speculative Theory....................................................................... 58 2.2 Speculative Experiment................................................................................................. 60 2.3 Speculative Experiment of Fiction: Science Fiction and the Politics of Speculation ................................................................................................................................................. 69 2.4 Theory and Experiment: the Dialectics ....................................................................... 76 2.5 Conclusion....................................................................................................................... 79 3. Interpreting and Measuring: the Fiction of the Higgs and the Fable of Fundamental Interpretation .............................................................................................................................. 81 3.1 The Higgs boson and its Speculative Denouement for the Standard Model ...... 100 3.2 The Foundation of Measurement and (Non)-Standard Interpretation ................ 113 3.3 Conclusion..................................................................................................................... 124 4. Rapprochement of the micro and macro in Egan’s Quarantine .................................. 126 4.1 Reading Quarantine as Speculative Theory in the Epochs of Capital.................. 145 4.2 Conclusion..................................................................................................................... 166 vii 5. Observation or What You See is Not What You Always Get: the Impossibility of Observing the Unknown........................................................................................................ 169 5.1 The Fiction of the Higgs boson: Dimensions of Observability .............................. 175 5.2 The Missing Supersymmetry (SUSY) and Going Beyond the Standard Model (BSM) .................................................................................................................................... 192 5.3 Conclusion..................................................................................................................... 199 6. Fact from Fiction: the Impossible Affair of Observing the New through an Unknown ................................................................................................................................... 201 6.1 Hard Science Fiction: the Ethics of the Speculative................................................. 208 6.2 Configuring Scientific Observation in Hard Science Fiction ................................. 215 6.3 The Morality of the Scientific Method: Fictive Realities ......................................... 235 6.4 Conclusion..................................................................................................................... 244 7. Simulating Nature: Monte Carlo as Speculative Methodology of Approximating the Ontology of Particle Physics.................................................................................................. 245 7.1 The Cybernetic World of the Monte Carlo in High Stakes Physics ...................... 258 7.2 Monte Carlo as Speculative Heuristics of the Higgs Boson ................................... 271 7.3 Conclusion..................................................................................................................... 283 8. Epilog: Evaluating Speculative Physics........................................................................... 289 8.1 Extending Speculative Physics Beyond Physics and Science Fiction ................... 299 8.2 Critical Science Studies and Speculative Physics..................................................... 301 Appendix A: The Standard Model of Particle Physics: From Prehistory to History .. 305 A.1 Cosmic Rays and the Particles of the Standard Model .......................................... 312 A.2 The Metaphysics of the Gauge Entities.................................................................... 317 viii A.3 The Enigma of the Quark ........................................................................................... 323 A.4 Beyond the Standard Model ...................................................................................... 332 Bibliography ............................................................................................................................
Recommended publications
  • Arxiv:0908.1787V1 [Quant-Ph] 13 Aug 2009 Ematical Underpinning
    August 13, 2009 18:17 Contemporary Physics QuantumPicturalismFinal Contemporary Physics Vol. 00, No. 00, February 2009, 1{32 RESEARCH ARTICLE Quantum picturalism Bob Coecke∗ Oxford University Computing Laboratory, Wolfson Building, Parks Road, OX1 3QD Oxford, UK (Received 01 02 2009; final version received XX YY ZZZZ) Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the `no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of `quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is `low-level'. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols.
    [Show full text]
  • Dynamical Relaxation to Quantum Equilibrium
    Dynamical relaxation to quantum equilibrium Or, an account of Mike's attempt to write an entirely new computer code that doesn't do quantum Monte Carlo for the first time in years. ESDG, 10th February 2010 Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] { Typeset by FoilTEX { 1 What I talked about a month ago (`Exchange, antisymmetry and Pauli repulsion', ESDG Jan 13th 2010) I showed that (1) the assumption that fermions are point particles with a continuous objective existence, and (2) the equations of non-relativistic QM, allow us to deduce: • ..that a mathematically well-defined ‘fifth force', non-local in character, appears to act on the particles and causes their trajectories to differ from the classical ones. • ..that this force appears to have its origin in an objectively-existing `wave field’ mathematically represented by the usual QM wave function. • ..that indistinguishability arguments are invalid under these assumptions; rather antisymmetrization implies the introduction of forces between particles. • ..the nature of spin. • ..that the action of the force prevents two fermions from coming into close proximity when `their spins are the same', and that in general, this mechanism prevents fermions from occupying the same quantum state. This is a readily understandable causal explanation for the Exclusion principle and for its otherwise inexplicable consequences such as `degeneracy pressure' in a white dwarf star. Furthermore, if assume antisymmetry of wave field not fundamental but develops naturally over the course of time, then can see character of reason for fermionic wave functions having symmetry behaviour they do.
    [Show full text]
  • INVENTING REALITY EALITY “This Book Makes for Smooth Riding Over the Rough Terrain of
    “...a rich account of the dogged and often futile attempt of physicists to talk about nature.” —Alan Lightman Author of Time Travel and Papa Joe’s Pipe: Essays on the Human side of Science INVENTING INVENTING REALITY EALITY “This book makes for smooth riding over the rough terrain of ... PHYSICS AS modern physics... [Gregory] steers the reader unerringly to his provocative conclusion: reality is a function of language...” R —Lynn Margulis LANGUAGE Coauthor of Microcosmos, Five Kingdoms, and Origins of Sex Physicists do not discover the physical world. Rather, they invent a physical world—a story that closely fits the facts they create in ex- perimental apparatus. From the time of Aristotle to the present, In- venting Reality explores science’s attempts to understand the world by inventing new vocabularies and new ways to describe nature. Drawing on the work of such modern physicists as Bohr, Einstein, and Feynman, Inventing Reality explores the relationship between language and the world. Using ingenious metaphors, concrete examples from everyday life, and engaging, nontechnical language, Gregory color- fully illustrates how the language of physics works, and demonstrates the notion that, in the words of Einstein, “physical concepts are free creations of the human mind.” BRUCE GREGORY is an Associate Director of the Harvard- Smithsonian Center for Astrophysics. For over twenty years he has made science intelligible to audiences ranging from junior high school students to Members of Congress. B R U C E G R E G O R Y Back cover Front cover INVENTING INVENTING REALITY REALITY PHYSICS AS LANGUAGE ❅ Bruce Gregory For Werner PREFACE Physics has been so immensely successful that it is difficult to avoid the conviction that what physicists have done over the past 300 years is to slowly draw back the veil that stands between us and the world as it really is—that physics, and every science, is the discovery of a ready-made world.
    [Show full text]
  • Infinite Potential Show Title: Generic Show Episode #101 Date: 3/17/20 Transcribed by Daily Transcription Tre
    INFINITE POTENTIAL SHOW TITLE: GENERIC SHOW EPISODE #101 DATE: 3/17/20 TRANSCRIBED BY DAILY TRANSCRIPTION_TRE 00:00:28 DAVID BOHM People talked about the world, and I said, "Where does it end?" and, uh, uh... MALE And what answer did they give? DAVID BOHM Well, they-I never, uh, I don't remember. It wasn't terribly convincing I suppose. [LAUGH] DR. DAVID C. It was, uh, a night, and we were SCHRUM walking under the stars, black sky, and he looked up to the stars, and he said, "Ordinarily, when we look to the sky and look to the stars, we think of stars as objects far out and vast spaces between them." He said, "There's another way we can look at it. We can look at the vacuum at the emptiness instead as a planum, as infinitely full rather than infinitely empty. And that the material objects themselves are like little bubbles, little vacancies in this vast sea." 00:01:25 DR. DAVID C. So David Bohm, in a sense, was SCHRUM using that view to have me look at the stars and to have a sense of the night sky all of a sudden in a different way, as one whole living organism and these little bits that we call matter as sort to just little holes in it. DR. DAVID C. He often mentioned just one other SCHRUM aspect of this, that this planum, in a cubic centimeter of the planum, there's more, uh, energy matter than in the entire visible Page 2 of 62 universe.
    [Show full text]
  • Pilot-Wave Theory, Bohmian Metaphysics, and the Foundations of Quantum Mechanics Lecture 8 Bohmian Metaphysics: the Implicate Order and Other Arcana
    Pilot-wave theory, Bohmian metaphysics, and the foundations of quantum mechanics Lecture 8 Bohmian metaphysics: the implicate order and other arcana Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] – Typeset by FoilTEX – 1 Acknowledgements The material in this lecture is largely derived from books and articles by David Bohm, Basil Hiley, Paavo Pylkk¨annen, F. David Peat, Marcello Guarini, Jack Sarfatti, Lee Nichol, Andrew Whitaker, and Constantine Pagonis. The text of an interview between Simeon Alev and Peat is extensively quoted. Other sources used and many other interesting papers are listed on the course web page: www.tcm.phy.cam.ac.uk/∼mdt26/pilot waves.html MDT – Typeset by FoilTEX – 2 More philosophical preliminaries Positivism: Observed phenomena are all that require discussion or scientific analysis; consideration of other questions, such as what the underlying mechanism may be, or what ‘real entities’ produce the phenomena, is dismissed as meaningless. Truth begins in sense experience, but does not end there. Positivism fails to prove that there are not abstract ideas, laws, and principles, beyond particular observable facts and relationships and necessary principles, or that we cannot know them. Nor does it prove that material and corporeal things constitute the whole order of existing beings, and that our knowledge is limited to them. Positivism ignores all humanly significant and interesting problems, citing its refusal to engage in reflection; it gives to a particular methodology an absolutist status and can do this only because it has partly forgotten, partly repressed its knowledge of the roots of this methodology in human concerns.
    [Show full text]
  • Non-Locality in the Stochastic Interpretation of the Quantum Theory Annales De L’I
    ANNALES DE L’I. H. P., SECTION A D. BOHM Non-locality in the stochastic interpretation of the quantum theory Annales de l’I. H. P., section A, tome 49, no 3 (1988), p. 287-296 <http://www.numdam.org/item?id=AIHPA_1988__49_3_287_0> © Gauthier-Villars, 1988, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincare, Vol. 49, n° 3, 1988, 287 Physique theorique Non-Locality in the Stochastic Interpretation of the Quantum Theory D. BOHM Department of Physics, Birkbeck College (London University), Malet Street, London WC1E 7HX ABSTRACT. - This article reviews the stochastic interpretation of the quantum theory and shows in detail how it implies non-locality. RESUME . - Cet article presente une revue de 1’interpretation stochas- tique de la theorie quantique et montre en detail en quoi elle implique une non-localite. 1. INTRODUCTION It gives me great pleasure on the occasion of Jean-Pierre Vigier’s retire- ment to recall our long period of fruitful association and to say something about the stochastic interpretation of the quantum theory, in which we worked together in earlier days. Because of requirements of space, however, this article will be a condensation of my talk (*) which was in fact based on a much more extended article by Basil Hiley and me [1 ].
    [Show full text]
  • Spacetime Warps and the Quantum World: Speculations About the Future∗
    Spacetime Warps and the Quantum World: Speculations about the Future∗ Kip S. Thorne I’ve just been through an overwhelming birthday celebration. There are two dangers in such celebrations, my friend Jim Hartle tells me. The first is that your friends will embarrass you by exaggerating your achieve- ments. The second is that they won’t exaggerate. Fortunately, my friends exaggerated. To the extent that there are kernels of truth in their exaggerations, many of those kernels were planted by John Wheeler. John was my mentor in writing, mentoring, and research. He began as my Ph.D. thesis advisor at Princeton University nearly forty years ago and then became a close friend, a collaborator in writing two books, and a lifelong inspiration. My sixtieth birthday celebration reminds me so much of our celebration of Johnnie’s sixtieth, thirty years ago. As I look back on my four decades of life in physics, I’m struck by the enormous changes in our under- standing of the Universe. What further discoveries will the next four decades bring? Today I will speculate on some of the big discoveries in those fields of physics in which I’ve been working. My predictions may look silly in hindsight, 40 years hence. But I’ve never minded looking silly, and predictions can stimulate research. Imagine hordes of youths setting out to prove me wrong! I’ll begin by reminding you about the foundations for the fields in which I have been working. I work, in part, on the theory of general relativity. Relativity was the first twentieth-century revolution in our understanding of the laws that govern the universe, the laws of physics.
    [Show full text]
  • Views Expressed Are Those of the 37086
    Dædalus coming up in Dædalus: Dædalus on learning Alison Gopnik, Howard Gardner, Jerome Bruner, Susan Carey, Journal of the American Academy of Arts & Sciences Elizabeth Spelke, Patricia Smith Churchland, Clark Glymour, Daniel John Povinelli, and Michael Tomasello Fall 2003 Fall 2003: on science Fall on happiness Martin E. P. Seligman, Richard A. Easterlin, Martha C. Nussbaum, on science Alan Lightman A sense of the mysterious 5 Anna Wierzbicka, Bernard Reginster, Robert H. Frank, Julia E. Annas, Roger Shattuck, Darrin M. McMahon, and Ed Diener Albert Einstein Physics & reality 22 Gerald Holton Einstein’s Third Paradise 26 on progress Joseph Stiglitz, John Gray, Charles Larmore, Randall Kennedy, Peter Pesic Bell & buzzer 35 Sakiko Fukuda-Parr, Jagdish Bhagwati, Richard A. Shweder, and David Pingree The logic of non-Western science 45 others Susan Haack Trials & tribulations 54 Andrew Jewett Science & the promise of democracy on human nature Steven Pinker, Lorraine Daston, Jerome Kagan, Vernon Smith, in America 64 Joyce Appleby, Richard Wrangham, Patrick Bateson, Thomas Sowell, Jonathan Haidt, and Donald Brown poetry Les Murray The Tune on Your Mind & Photographing Aspiration 71 on race Kenneth Prewitt, Orlando Patterson, George Fredrickson, Ian Hacking, Jennifer Hochschild, Glenn Loury, David Hollinger, ½ction Joanna Scott That place 73 Victoria Hattam, and others notes Elizabeth F. Loftus on science under legal assault 84 Perez Zagorin on humanism past & present 87 plus poetry by David Ferry, Richard Wilbur, Franz Wright, Rachel Hadas, W. S. Merwin, Charles Wright, Richard Howard &c.; ½ction by Chuck Wachtel &c.; and notes by Gerald Early, Linda Hutcheon, Jennifer Hochschild, Charles Altieri, Richard Stern, Donald Green, S.
    [Show full text]
  • 16-1 Paul Howard
    BESHARA MAGAZINE Unity in the Contemporary World ISSUE 16-1 · SUMMER 2020 INFINITE POTENTIAL: THE LIFE & IDEAS OF DAVID BOHM Film director Paul Howard talks about his new film on a remarkable scientist whose vision of wholeness and interconnectivity is now reaching a wide audience A still from the film Infinite Potential: The Life & Ideas of David Bohm avid Bohm ( 191 7–92 ) has been descri - Ear lier this year, we published an interview Dbed as one of the most significant thin- we did with him in 1991 . Now a film has been kers of the twentieth century. As a theoretical made about his life and ideas which brings to - physicist, he developed a radical approach to gether an impressive array of contemporary quantum mechanics which proposes that thinkers who are taking his vision forward. whole ness and interconnectivity are the fun - Paul Howard, its director, talks to Jane Clark damental principles of reality. In line with and Michael Cohen about the making of the this, his interests and influence extended be - film and Bohm’s importance for the world yond the confines of science to the realms of today. philosophy, spirituality and social change. u nfinite Potential begins with a story by Bohm’s one-time Istudent Dr David Schrum: “It was a night and we were walking under the stars, a black sky. David looked up at the stars and said: ‘Ordinarily, when we look to the sky and we look at the stars, we think of the stars as objects far out and that they have space in between them.
    [Show full text]
  • Arxiv:1707.00609V2 [Quant-Ph] 3 Oct 2018
    Bohm's approach to quantum mechanics: Alternative theory or practical picture? A. S. Sanz∗ Department of Optics, Faculty of Physical Sciences, Universidad Complutense de Madrid, Pza. Ciencias 1, Ciudad Universitaria E-28040 Madrid, Spain Since its inception Bohmian mechanics has been generally regarded as a hidden-variable theory aimed at providing an objective description of quantum phenomena. To date, this rather narrow conception of Bohm's proposal has caused it more rejection than acceptance. Now, after 65 years of Bohmian mechanics, should still be such an interpretational aspect the prevailing appraisal? Why not favoring a more pragmatic view, as a legitimate picture of quantum mechanics, on equal footing in all respects with any other more conventional quantum picture? These questions are used here to introduce a discussion on an alternative way to deal with Bohmian mechanics at present, enhancing its aspect as an efficient and useful picture or formulation to tackle, explore, describe and explain quantum phenomena where phase and correlation (entanglement) are key elements. This discussion is presented through two complementary blocks. The first block is aimed at briefly revisiting the historical context that gave rise to the appearance of Bohmian mechanics, and how this approach or analogous ones have been used in different physical contexts. This discussion is used to emphasize a more pragmatic view to the detriment of the more conventional hidden-variable (ontological) approach that has been a leitmotif within the quantum foundations. The second block focuses on some particular formal aspects of Bohmian mechanics supporting the view presented here, with special emphasis on the physical meaning of the local phase field and the associated velocity field encoded within the wave function.
    [Show full text]
  • Basil Hiley Basil Was Born in Yangon, Myanmar, (Formerly Known As Burma) on the 15 November 1935
    What does it mean to comprehend and to participate in life holistically? Pari Dialogues 2019 explores this challenge. Through seminars, discussions and practical sessions, we will journey together into subtle realms of art, physics, cultural studies, philosophy, economics and technology—pathways to investigate wholeness and to ponder our place in it. Join us at The Pari Center and engage in a spirit that honours the approaches and work of David Bohm and F. David Peat, as we explore bringing together art, science and the sacred in the quest for wholeness. This will be an informal meeting with presentations by experts followed by roundtable dis- cussions. The cost of the event is 1400 euros. The event fee includes 6 night stay in pri- vate accommodation and all meals. It also includes activities, materials and teaching ses- sions. The event starts on Thursday August 29 at 19:00 with dinner and ends on Wednes- day September 4 after lunch. Jena Axelrod Jena joined Ideal Prediction as Director of Sales in 2018 bringing 20 years of experience in launching innovative financial market offerings from the first electronic treasury trading system, LibertyDirect, to the first centrally-cleared FX market, FXMarketSpace. Jena directed and produced the upcoming documentary Absurdity of Certainty on the rise of certainty in the Western worldview, based on the life and ideas of Dr. F. David Peat. Jena has served on the Board of The Pari Center since 2016. Absurdity of Certainty Why are we certain in a chaotic world? The upcoming documentary Absurdity of Certainty explores the illusion of control and certainty in historical scientific context with quantum physicist turned philosopher Dr.
    [Show full text]
  • I Continue Quoting from Alan Lightman's, "A Modern Day Yankee in a Connecticut Court and Other Essays on Science"
    I continue quoting from Alan Lightman's, "A Modern Day Yankee In A Connecticut Court and other essays on Science". Conversations with Papa Joe The Fourth Evening "The next day I stayed home to prepare some lectures, but my heart wasn't in it. I spent the time reading a novel instead, sitting in Papa Joe's chair. That night the old gentleman returned as he had promised, and wasted no time in getting to the topic of conversation. "Now, I'm not afraid of numbers, young man," he began. "A fellow in construction for forty years knows numbers." He paused. "But I don't understand about equations. And I especially don't understand why you put so much stock in them." I got out a sheet of paper and wrote down: C = 2 pi r "Papa Joe, this says that the circumference of a circle equals its radius times two, times pi, a special number close to 3.14." "I remember that rule," my great-grandfather said. "The real strength of equations is their logic," I said. "You start at one point, and an equation tells you what has to come next, according to logic. In the example here, you give the radius of any circle, and this equation says what its circumference has to be. I think the Babylonians or somebody figured the thing out first. They went out and measured the radii and the circumferences of a whole bunch of circles, of all different sizes, and gradually realized that a precise mathematical law held every time. It saved them a lot of trouble when they found it.
    [Show full text]