Wetland Hydrodynamics Using Interferometric Synthetic Aperture Radar, Remote Sensing, and Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flow Regime Transition in Countercurrent Packed Column Monitored by ECT
Flow Regime Transition in Countercurrent Packed Column Monitored by ECT Zhigang Li, Yuan Chen, Yunjie Yang, Chang Liu, Mathieu Lucquiaud and Jiabin Jia* School of Engineering, The University of Edinburgh, Edinburgh, UK, EH9 3JL [email protected] Abstract Vertical packed columns are widely used in absorption, stripping and distillation processes. Flooding will occur in the vertical packed columns as a result of excessive liquid accumulation, which reduces mass transfer efficiency and causes a large pressure drop. Pressure drop measurements are typically used as the hydrodynamic parameter for predicting flooding. They are, however, only indicative of the occurrence of transition of the flow regime across the packed column. They offer limited spatial information to mass transfer packed column operators and designers. In this work, a new method using Electrical Capacitance Tomography (ECT) is implemented for the first time so that real-time flow regime monitoring at different vertical positions is achieved in a countercurrent packed bed column using ECT. Two normalisation methods are implemented to monitor the transition from pre-loading to flooding in a column of 200 mm diameter, 1200 mm height filled with plastic structured packing. Liquid distribution in the column can be qualitatively visualised via reconstructed ECT images. A flooding index is implemented to quantitatively indicate the progression of local flooding. In experiments, the degree of local flooding is quantified at various gas flow rates and locations of ECT sensor. ECT images were compared with pressure drop and visual observation. The experimental results demonstrate that ECT is capable of monitoring liquid distribution, identifying flow regime transitions and predicting local flooding. -
The River Logone: a Mixed-Blessing to the Inhabitants of Mayo Danay
SYLLABUS Revue scientifique interdisciplinaire de l’École Normale Supérieure Série Lettres et sciences humaines Numéro spécial volume VII N° 1 2016 THE RIVER LOGONE: A MIXED-BLESSING TO THE INHABITANTS OF MAYO DANAY DIVISION, FAR-NORTH REGION OF CAMEROON TAKEM MBI Bienvenu Magloire National Institute of Cartography, P.O. Box 157, INC, Yaoundé [email protected] Abstract This paper sought to know if the constant supply of water to the River Logone, in a very low altitude area, from the wet tropical highlands in central Cameroon and the Adamawa plateau is a mixed- blessing to the inhabitants of Mayo Danay. Data was gathered through field enquiry and discussions with administrative authorities in October 2014. Results depict that a number of activities like farming, fishing, animal rearing and transport in the area depend on the River Logone despite that it is a source of floods and facilitates the spreading of malaria parasite. Conclusively, it is actually a mixed- blessing to the people, necessitating measures to make it less hazardous. Key-Words: Far North Cameroon, Floods, Mayo Danay, River Logone. Résumé Cet article permet de savoir si l’approvisionnement constant en eau du fleuve Logone à partir des hautes montagnes tropicales du centre du Cameroun et du plateau de l’Adamaoua vers une zone de basse altitude est une source de vie ou de désastre pour les habitants du 217 TAKEM MBI Bienvenu Magloire / SYLLABUS NUMERO SPECIAL VOL VII N° 1, 2016 : 217 - 242 THE RIVER LOGONE: A MIXED-BLESSING TO THE INHABITANTS OF MAYO DANAY DIVISION, FAR-NORTH REGION OF CAMEROON Mayo Danay. -
By Mary Katherine Matella a Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of Doctor of Philo
Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits by Mary Katherine Matella A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Adina M. Merenlender, Chair Professor Maggi Kelly Professor G. Mathias Kondolf Spring 2013 Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits Copyright 2013 by Mary Katherine Matella ABSTRACT Floodplain restoration planning for a changing climate: Coupling flow dynamics with ecosystem benefits by Mary Katherine Matella Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Adina M. Merenlender, Chair This dissertation addresses the role that dynamic flow characteristics play in shaping the potential for significant ecosystem benefits from floodplain restoration. Mediterranean-climate river systems present challenges for restoring healthy floodplains because of the inter and intra- annual variability in stream flow, which has been dramatically reduced in an effort to control flooding and to provide a more consistent year-round water supply for human use. Habitat restoration efforts require that this reduced stream flow be altered in order to recover more naturally dynamic flow patterns and reconnect floodplains. This thesis defines and takes advantage of an eco-hydrology modeling framework to reveal how the ecological returns of different hydrologic alterations or restoration scenarios—including changes to the physical landscape and flow dynamics—influence habitat connectivity for freshwater biota. A method for quantifying benefits of expanding floodplain connectivity can highlight actions that might simultaneously reduce flood risk and restore ecological functions, such as supporting fish habitat benefits, food web productivity, and riparian vegetation establishment. -
Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas Kathryn Lea Mccoy University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas Kathryn Lea McCoy University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Hydraulic Engineering Commons Recommended Citation McCoy, Kathryn Lea, "Comprehensive Drainage Study of the Upper Reach of College Branch in Fayetteville, Arkansas" (2012). Theses and Dissertations. 650. http://scholarworks.uark.edu/etd/650 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. COMPREHENSIVE DRAINAGE STUDY OF THE UPPER REACH OF COLLEGE BRANCH IN FAYETTEVILLE, ARKANSAS COMPREHENSIVE DRAINAGE STUDY OF THE UPPER REACH OF COLLEGE BRANCH IN FAYETTEVILLE, ARKANSAS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering By Kathryn Lea McCoy University of Arkansas Bachelor of Science in Biological Engineering, 2009 December 2012 University of Arkansas ABSTRACT College Branch is a stream with headwaters located on the University of Arkansas campus. The stream flows through much of the west side of campus, gaining discharge and enlarging its channel as it meanders to the south. College Branch has experienced erosion and flooding issues in recent years due to increased urbanization of its watershed and increased runoff volume. The purpose of this project was to develop a comprehensive drainage study of College Branch on the University of Arkansas campus. -
Image Analysis Techniques to Estimate River Discharge Using Time-Lapse Cameras in Remote Locations
Image analysis techniques to estimate river discharge using time-lapse cameras in remote locations David S. Young1, Jane K. Hart2, Kirk Martinez1 1 – Electronics and Computer Science, 2 – Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK email: [email protected], [email protected], [email protected] NOTICE: This is the authors’ version of a work that was accepted for publication in Computers & Geosciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Geosciences, 76, 1-10 (2015) doi: 10.1016/j.cageo.2014.11.008 Abstract Cameras have the potential to provide new data streams for environmental science. Improvements in image quality, power consumption and image processing algorithms mean that it is now possible to test camera-based sensing in real-world scenarios. This paper presents an 8-month trial of a camera to monitor discharge in a glacial river, in a situation where this would be difficult to achieve using methods requiring sensors in or close to the river, or human intervention during the measurement period. The results indicate diurnal changes in discharge throughout the year, the importance of subglacial winter water storage, and rapid switching from a “distributed” winter system to a “channelised” summer drainage system in May. They show that discharge changes can be measured with an accuracy that is useful for understanding the relationship between glacier dynamics and flow rates. -
Species Limits in the Indigobirds (Ploceidae, Vidua) of West Africa: Mouth Mimicry, Song Mimicry, and Description of New Species
MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 162 Species Limits in the Indigobirds (Ploceidae, Vidua) of West Africa: Mouth Mimicry, Song Mimicry, and Description of New Species Robert B. Payne Museum of Zoology The University of Michigan Ann Arbor, Michigan 48109 Ann Arbor MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN May 26, 1982 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN The publications of the Museum of Zoology, University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, publication of which was begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum techniques, monographic studies, and other contributions not within the scope of the Occasional Papers, are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan 48109. MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 162 Species Limits in the Indigobirds (Ploceidae, Vidua) of West Africa: Mouth Mimicry, Song Mimicry, and Description of New Species Robert B. -
STP Volumetric Gas Flow
5/25/2019 Conversion of Standard Volumetric Flow Rates of Gas – Neutrium f Neutrium ARTICLES PODCAST CONTACT DONATE CONVERSION OF STANDARD VOLUMETRIC FLOW RATES OF GAS SUMMARY Standard volumetric flow rates of a fluid are the equivalent of actual volumetric flow rates in the sense that they have an equal mass flow rate. This identity makes standard volumetric flow appropriate providing a common baseline for comparison of volumetric gas flow rate measurements at different conditions. This article outlines how to convert between standard and actual volumetric flow rates. 1. DEFINITIONS ρ : Density of a specific fluid denoted by a subscript (kg/m3) MW : Molecular Weight P : Pressure (Pa) Q : Volumetric flow rate (m3/s) T : Temperature (K) Z : Compressibility Factor https://neutrium.net/general_engineering/conversion-of-standard-volumetric-flow-rates-of-gas/ 1/4 5/25/2019 Conversion of Standard Volumetric Flow Rates of Gas – Neutrium 2. INTRODUCTION Standard volumetric flow rates denote volumetric flow rates of gas corrected to standardised properties of temperature, pressure and relative humidity. Its use is common across engineering and allows a direct comparison to be made between gaseous flows in a manner identical to comparing their mass flow rates. Standard volumetric flow is also commonly used by vendors when describing the capacity of vents or pressure relief devices, however for capacity checks at different conditions a comparison on a pressure loss basis is more appropriate. The most common units to describe standard volumetric flows are standard cubic meters per hour (SCMH) in metric units and standard cubic feet per minute (SCFM) in imperial units. -
Forecasting the Colorado River Discharge Using an Artificial Neural Network
Forecasting the Colorado River Discharge Using an Artificial Neural Network (ANN) Approach Amirhossein Mehrkesh, Maryam Ahmadi University of Colorado Denver, Denver, CO 80005 Abstract Artificial Neural Network (ANN) based model is a computational approach commonly used for modeling the complex relationships between input and output parameters. Prediction of the flow rate of a river is a requisite for any successful water resource management and river basin planning. In the current survey, the effectiveness of an Artificial Neural Network was examined to predict the Colorado River discharge. In this modeling process, an ANN model was used to relate the discharge of the Colorado River to such parameters as the amount of precipitation, ambient temperature and snowpack level at a specific time of the year. The model was able to precisely study the impact of climatic parameters on the flow rate of the Colorado River. Keywords: Artificial Neural Network, Discharge, Colorado River, River basin planning 1. Introduction The volumetric flow rate of a river, also called its discharge, at a particular point, is the volume of water passing through the cross section of the river at that point in a unit of time. As aforementioned, forecasting the flow rate of a river could be very useful in water resources management. Any seasonal river basin planning for designation of water between different consumers can not succeed without knowing/predicting the amount of water (i.e. flow rate) passes through the river at that time. 1.1. Colorado River The Colorado River is one of the main surface water streams in the southwestern United States. -
Review of River Fisheries Valuation in West and Central Africa by Arthur
Neiland and Béné ___________________________________________________________________________________ Review of River Fisheries Valuation in West and Central Africa by Arthur Neiland (1) & Christophe Béné (2) IDDRA (Institute for Sustainable Development & Aquatic Resources) Portsmouth Technopole Kingston Crescent Portsmouth PO2 Hants United Kingdom Tel: +44 2392 658232 E-mail: [email protected] CEMARE (Centre for the Economics & Management of Aquatic Resources) University of Portsmouth Locksway Road Portsmouth PO4 8JF Hants United Kingdom Tel: +44 2392 844116 1 E-mail: [email protected] 1 Dr Bene is now at the World Fish Center 1 Neiland and Béné ___________________________________________________________________________________ ABSTRACT This paper provides a review of the valuation of river fisheries in West and Central Africa. It is the general perception that compared to the biological and ecological aspects of river fisheries, this particular subject area has received comparatively little attention. Economic valuation is concerned with finding expression for what is important in life for human society. It should therefore be a central and integral part of government decision-making and policy. The paper starts with a review of concepts and methods for valuation. Three main types of valuation techniques are identified: conventional economic valuations, economic impact assessments and socio-economic investigations and livelihood analysis. On the basis of a literature review, valuation information was then synthesised for the major regional river basins and large lakes, and also used to develop a series of national fisheries profiles. To supplement this broad perspective, a series of case-studies are also presented, which focus in particular on the impact of changes in water management regime. Finally, the paper presents an assessment of the three main types of valuation methodology and a set of conclusions and recommendations for future valuation studies. -
Effect of Season on Myxosporean Infections
e Rese tur arc ul h c & a u D q e A v Fonkwa et al. J Aquac Res Development 2018, 9:5 e f l o o l p Journal of Aquaculture a m DOI: 10.4172/2155-9546.1000533 n r e u n o t J Research & Development ISSN: 2155-9546 Research Article Article Open Access Effect of Season on Myxosporean Infections in Oreochromis niloticus Linnaeus, 1758 (Cichlidae) at MAPE Dam in Adamawa, Cameroon Fonkwa Georges1,3*, Lekeufack Folefack Guy Benoît2, Tchuinkam Timoléon3, Ishtiyaq Ahmad4 and Tchoumboue Joseph1 1Applied Hydrobiology and Ichthyology Research Unit, Department of Animal production, Faculty of Agronomy and Agricultural Science, University of Dschang, P.O. Box 222, Dschang-Cameroon 2Laboratory of General Biology, Faculty of Science, University of Yaoundé I, P. O. Box 812, Yaoundé-Cameroon 3Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit, Department of Animal Biology, Faculty of Science, University of Dschang P.O. Box 67, Dschang-Cameroon 4DST Sponsored Fish Nutrition Laboratory, Department of Zoology, University of Kashmir, Sringagr, J&K, India-190006 Abstract In order to contribute to a better understanding of the effect of season on Myxosporean infections so as to elaborate prevention and control strategies, 350 Oreochromis niloticus specimens were sampled from May 2016 to May 2017 from the MAPE dam (Adamawa-Cameroon) and the prevalence of infection was determined after classical examination of fish. A total of 12 species of Myxosporeans belonging to the genus Myxobolus were identified. Irrespective of the parasite species, the prevalence was significantly higher in the dry season (52.94%) than the rainy season (39.59%). -
Folk Knowledge of Fish Among the Kotoko of Logone-Birni
Ministry of Scientific Research and Innovation Folk Knowledge of Fish Among the Kotoko of Logone-Birni Aaron Shryock [DRAFT CIRCULATED FOR COMMENT] SIL B.P. 1299, Yaoundé Cameroon [email protected] (237) 77.77.15.98 (237) 22.17.17.82 2009 Abbreviations ad. adult adl. large adult ads. subadult cf. refer to ex. excluding fem. female juv. juvenile juvl. large juvenile mal. male n. noun n.f. feminine noun n.f.pl. noun which may be feminine or plural without any overt change in its shape n.m. masculine noun n.m.f. noun which may be masculine or feminine without any overt change in its shape n.m.f.pl. noun which may be masculine, feminine, or plural without any overt change n.m.pl. noun which may be masculine or plural without any overt change in its shape n.pl. plural noun pl. plural sg. singular sp. species spp. species, plural syn. synonym TABLE OF CONTENTS Abbreviations........................................................................................................................................i 1. Introduction......................................................................................................................................1 1.1 The purpose of the study and the methods.............................................................................................. 1 1.2 The Kotoko and their language ............................................................................................................... 1 1.3 Fish fauna............................................................................................................................................... -
The Case of Cameroon
Report No. 87913 Public Disclosure Authorized Understanding the Impact of Climate Change on Hydropower: the case of Cameroon Public Disclosure Authorized April 27, 2014 AFTEG Africa Energy Practice Public Disclosure Authorized Public Disclosure Authorized i Understanding the Impact of Climate Change on Hydropower: the case of Cameroon Climate Risk Assessment for hydropower generation in Cameroon by Johan Grijsen With ii Contents Executive Summary 1. Introduction and objective 1.1. Objective of the Climate Risk Assessment 1.2. Previous studies on climate risk to Cameroon’s water resources 1.3. Outline of the report 2. Decision scaling methodology for a risk-based assessment of climate change impacts on WR 2.1. Top-down approach 2.2. Decision - scaling methodology 2.3. Identification of climate hazards and thresholds 2.4. Vulnerability assessment: Assessment of system response to changes in runoff 2.5. Climate Informed Risks: Estimating likelihood of climate conditions and hazards 2.6. Summary of the adopted methodology for Climate Risk Assessment 3. Hydrometeorological data for the five main river basins in Cameroon 3.1. Cameroon’s river basins 3.2. Runoff data 3.3. Precipitation, temperature and potential evapotranspiration data 3.4. Trends and abrupt changes in rainfall across Cameroon 4. Runoff response to climate change 4.1. Assessment of climate elasticity of streamflow through regression analysis 4.2. Use of the aridity index to assess climate change impacts on annual runoff 4.3. Climate and hydrological modeling 4.4. Regression analysis of basin runoff, rainfall and temperature 5. Vulnerability analysis: impacts of future runoff changes on WR system performance indicators 5.1.