Conducting a Simple Timber Inventory Conducting a Simple Timber Inventory Jason G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FAOSTAT-Forestry Definitions
FOREST PRODUCTS DEFINITIONS General terms FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Item Item Code Definition code coniferous C Coniferous All woods derived from trees classified botanically as Gymnospermae, e.g. Abies spp., Araucaria spp., Cedrus spp., Chamaecyparis spp., Cupressus spp., Larix spp., Picea spp., Pinus spp., Thuja spp., Tsuga spp., etc. These are generally referred to as softwoods. non-coniferous NC Non-Coniferous All woods derived from trees classified botanically as Angiospermae, e.g. Acer spp., Dipterocarpus spp., Entandrophragma spp., Eucalyptus spp., Fagus spp., Populus spp., Quercus spp., Shorea spp., Swietonia spp., Tectona spp., etc. These are generally referred to as broadleaves or hardwoods. tropical NC.T Tropical Tropical timber is defined in the International Tropical Timber Agreement (1994) as follows: “Non-coniferous tropical wood for industrial uses, which grows or is produced in the countries situated between the Tropic of Cancer and the Tropic of Capricorn. The term covers logs, sawnwood, veneer sheets and plywood. Plywood which includes in some measure conifers of tropical origin shall also be covered by the definition.” For the purposes of this questionnaire, tropical sawnwood, veneer sheets and plywood shall also include products produced in non-tropical countries from imported tropical roundwood. Please indicate if statistics provided under "tropical" in this questionnaire may include species or products beyond the scope of this definition. Year Data are requested for the calendar year (January-December) indicated. 2 Transactions FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Element Element Code Definition code 5516 Production Quantity Removals The volume of all trees, living or dead, that are felled and removed from the forest, other wooded land or other felling sites. -
Restoration of Dry Forests in Eastern Oregon
Restoration of Dry Forests in Eastern Oregon A FIELD GUIDE Acknowledgements Many ideas incorporated into this field guide originated during conversations between the authors and Will Hatcher, of the Klamath Tribes, and Craig Bienz, Mark Stern and Chris Zanger of The Nature Conservancy. The Nature Conservancy secured support for developing and printing this field guide. Funding was provided by the Fire Learning Network*, the Oregon Watershed Enhancement Board, the U.S. Forest Service Region 6, The Nature Conservancy, the Weyerhaeuser Family Foundation, and the Northwest Area Foundation. Loren Kellogg assisted with the discussion of logging systems. Bob Van Pelt granted permission for reproduction of a portion of his age key for ponderosa pine. Valuable review comments were provided by W.C. Aney, Craig Bienz, Mike Billman, Darren Borgias, Faith Brown, Rick Brown, Susan Jane Brown, Pete Caligiuri, Daniel Donato, James A. Freund, Karen Gleason, Miles Hemstrom, Andrew J. Larson, Kelly Lawrence, Mike Lawrence, Tim Lillebo, Kerry Metlen, David C. Powell, Tom Spies, Mark Stern, Darin Stringer, Eric Watrud, and Chris Zanger. The layout and design of this guide were completed by Keala Hagmann and Debora Johnson. Any remaining errors and misjudgments are ours alone. *The Fire Learning Network is part of a cooperative agreement between The Nature Conservancy, USDA Forest Service and agencies of the Department of the Interior: this institution is an equal opportunity provider. Suggested Citation: Franklin, J.F., K.N. Johnson, D.J. Churchill, K. Hagmann, D. Johnson, and J. Johnston. 2013. Restoration of dry forests in eastern Oregon: a field guide. The Nature Conservancy, Portland, OR. -
Buyers of Timber in Orange County
Companies that Buy Timber In County: Orange 7/7/2021 COMPANY PHONE, FAX, EMAIL and SPECIES PRODUCTS ADDRESS CONTACT PERSON PURCHASED PURCHASED 360 Forest Products, Inc. PHONE 910-285-5838 S Yellow Pine, E White Pine, Cypress, Standing Timber, Sawlogs, PO Box 157 FAX: 910-285-8009 Ash, Cherry, Red Oak, White Oak, Pulpwood, Poles, Pilings, Cottonwood, Beech, Hickory, Sweetgum, Chips, Chip-n-Saw, Veneer & Wallace, NC 28466 EMAIL: Black/Tupelo Gum, Soft Maple, Hard Plywood Logs or Bolts [email protected] Maple, Walnut, Yellow Poplar Larry Batchelor, President A & P Timber Co, Inc. PHONE 919-554-4597 All Hardwoods, All Softwoods Standing Timber 137 East Fleming Farm Dr FAX: Youngsville, NC 27596 EMAIL: Dwight Payne, Registered Forester All-Woods Timber Company, Inc. PHONE 919-818-5957 S Yellow Pine, All Hardwoods Standing Timber, Sawlogs, 2671 Charlie Long Road FAX: Pulpwood Hurdle Mills, NC 27571 EMAIL: Philip R. Whitfield, President Black Creek Forestry Services, LL PHONE (919)6314064 All Hardwoods, All Softwoods Standing Timber 4920 Raleigh Rd FAX: Benson, NC 27504 EMAIL: [email protected] Dave Hendershott, Owner Blue Chip Wood Products PHONE (919)805-0060 All Hardwoods, All Softwoods Standing Timber, Sawlogs, FAX: Pulpwood , NC EMAIL: [email protected] Bill Baxley Braxton's Sawmill, Inc. PHONE (336)376-6798 S Yellow Pine, Yellow-Poplar, Sweetgum, Standing Timber, Sawlogs 7519 D Lindley Mill Rd FAX: (336)376-8411 Soft Maple, Red Oak, White Oak, Hickory, Ash Graham, NC 27253 EMAIL: Christopher Braxton, President Canfor Southern Pine Graham PHONE (336)376-3130 S Yellow Pine Standing Timber, Sawlogs 4408 Mt Herman Rock Creek Rd FAX: (336)376-5858 Graham, NC 27253 EMAIL: [email protected]; doug.burleson Doug Burleson, Forester This is a list of individuals that purchase standing timber and have requested that their information be posted on the N.C. -
Tree Care Handbook
Minnesota SWCD Forestry Association Tree Handbook Dear Tree Planter. With headlines reporting the continuing deforestation of the tropical rain forest, one may ask the question: Are America’s forests in danger of disappearing? Because people such as yourself practice reforestation, our forested acres are actually growing in size. About one-third of the United States, or 731 million acres is covered with trees. That’s about 70 percent of the forest that existed when Columbus discovered America. Almost one third of this is set aside in permanent parks and wilderness areas. Minnesotans’ have planted an average of 12 million trees annually; enough trees to cover over 15,000 acres per year. Good land stewards are planting trees for many good reasons. The results of their efforts can be seen in reduced soil erosion, improved air and water quality, healthy forest industries, enhanced wildlife habitat and generally a more attractive surrounding for us to live in. Aspen has become the most prominent tree in Minnesota’s forests. After clearcutting, aspen regenerates readily by sprouting from its root system or by drifting seeds onto disturbed sites. Most of the other major species in Minnesota need some help from tree planters to ensure that they make up a part of the new forest. The following pages will help explain how to plant and care for a tree seedling. There is a section on the general characteristics and planting requirements of the tree and shrub species commonly planted for conservation purposes in Minnesota. The professionals working in conservation throughout Minnesota thank you for planting, nurturing and wisely using one of Minnesota’s greatest treasures its renewable trees. -
Florida's Timber Industry - Agriculture the Author
United States Department of Florida's Timber Industry - Agriculture The Author: Michael Howell is a Resource Forester, with the Forest Inventory and Analysis group, Southern Research Station, Asheville, NC. May 1995 Southern Research Station P.O. Box 2680 Asheville, NC 28802 Foreword This report contains the findings of a 1993 canvass of and location. Surveys for all timber products other all primary wood-using plants in Florida and presents than pulpwood began in 1958, and are currently con- changes in product output and residue use since 1991. ducted every 2 years. It complements the Forest Inventory and Analysis peri- Pulpwood production data were taken from an annual odic inventory of volume and removals from the State's canvass of all southeastern pulpmills, conducted timberland. The canvass was conducted to determine annually in cooperation with the American Pulpwood the amount and source of wood receipts and annual Association. Medium density fiberboard, insulating timber product drain by county in 1993 and to deter- board, and hardboard plants were included in this sur- mine interstate and cross-regional movement of indus- vey. trial roundwood. Only primary wood-using mills were canvassed. Primary mills are those that process round- The Southern Research Station gratefully acknowledges wood in log or bolt form or as chipped roundwood. the cooperation and assistance provided by the Florida Examples of industrial roundwood products are saw Department of Agriculture and Consumer Services. logs, pulpwood, veneer logs, poles, and logs used for Division of Marketing and Utilization in collecting mill composite board products. Mills produc~ngproducts data. Appreciation is also extended to forest industry from residues generated at primary and secondary and mill managers for providing timber products infor- processors were not canvassed. -
Forestry Materials Forest Types and Treatments
-- - Forestry Materials Forest Types and Treatments mericans are looking to their forests today for more benefits than r ·~~.'~;:_~B~:;. A ever before-recreation, watershed protection, wildlife, timber, "'--;':r: .";'C: wilderness. Foresters are often able to enhance production of these bene- fits. This book features forestry techniques that are helping to achieve .,;~~.~...t& the American dream for the forest. , ~- ,.- The story is for landolVners, which means it is for everyone. Millions . .~: of Americans own individual tracts of woodland, many have shares in companies that manage forests, and all OWII the public lands managed by government agencies. The forestry profession exists to help all these landowners obtain the benefits they want from forests; but forests have limits. Like all living things, trees are restricted in what they can do and where they can exist. A tree that needs well-drained soil cannot thrive in a marsh. If seeds re- quire bare soil for germination, no amount of urging will get a seedling established on a pile of leaves. The fOllOwing pages describe th.: ways in which stands of trees can be grown under commonly Occllrring forest conditions ill the United States. Originating, growing, and tending stands of trees is called silvicllllllr~ \ I, 'R"7'" -, l'l;l.f\ .. (silva is the Latin word for forest). Without exaggeration, silviculture is the heartbeat of forestry. It is essential when humans wish to manage the forests-to accelerate the production or wildlife, timber, forage, or to in- / crease recreation and watershed values. Of course, some benerits- t • wilderness, a prime example-require that trees be left alone to pursue their' OWII destiny. -
Maine Wood Volume and Projection Study
REPORT Maine Wood Volume and Projection Study Prepared for: FOR/Maine Prepared by: Gary Mullaney Ernest Bowling David Stevens May 21, 2018 85138F May 17, 2018 FOR/Maine Page i TABLE OF CONTENTS TABLE OF CONTENTS .............................................................................................................................................. i 1. EXECUTIVE SUMMARY ...................................................................................................................................... 1 Summary by Species Group .................................................................................................................. 2 Summary by Megaregion ....................................................................................................................... 6 2. INTRODUCTION .................................................................................................................................................... 7 Background and Purpose ...................................................................................................................... 7 Methodology - Current ........................................................................................................................... 7 Methodology - Modeling Approach ................................................................................................... 8 Mix By Landownership ........................................................................................................................ 10 3. MAINE’S TIMBER RESOURCE: -
Tree Density and Forest Productivity in a Heterogeneous Alpine Environment: Insights from Airborne Laser Scanning and Imaging Spectroscopy
Article Tree Density and Forest Productivity in a Heterogeneous Alpine Environment: Insights from Airborne Laser Scanning and Imaging Spectroscopy Parviz Fatehi 1,*, Alexander Damm 1, Reik Leiterer 1, Mahtab Pir Bavaghar 2, Michael E. Schaepman 1 and Mathias Kneubühler 1 1 Remote Sensing Laboratories (RSL), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; [email protected] (A.D.); [email protected] (R.L.); [email protected] (M.E.S.); [email protected] (M.K.) 2 Center for Research and Development of Northern Zagros Forests, Faculty of Natural Resources, University of Kurdistan, 66177-15175 Sanandaj, Iran; [email protected] * Correspondence: [email protected]; Tel.: +41-44-635-6508 Academic Editors: Christian Ginzler and Lars T. Waser Received: 8 March 2017; Accepted: 9 June 2017; Published: 16 June 2017 Abstract: We outline an approach combining airborne laser scanning (ALS) and imaging spectroscopy (IS) to quantify and assess patterns of tree density (TD) and forest productivity (FP) in a protected heterogeneous alpine forest in the Swiss National Park (SNP). We use ALS data and a local maxima (LM) approach to predict TD, as well as IS data (Airborne Prism Experiment—APEX) and an empirical model to estimate FP. We investigate the dependency of TD and FP on site related factors, in particular on surface exposition and elevation. Based on reference data (i.e., 1598 trees measured in 35 field plots), we observed an underestimation of ALS-based TD estimates of 40%. Our results suggest a limited sensitivity of the ALS approach to small trees as well as a dependency of TD estimates on canopy heterogeneity, structure, and species composition. -
Implications of Selective Harvesting of Natural Forests for Forest Product Recovery and Forest Carbon Emissions: Cases from Tarai Nepal and Queensland Australia
Article Implications of Selective Harvesting of Natural Forests for Forest Product Recovery and Forest Carbon Emissions: Cases from Tarai Nepal and Queensland Australia Bishnu Hari Poudyal, Tek Narayan Maraseni * and Geoff Cockfield Centre for Sustainable Agricultural Systems, University of Southern Queensland, Queensland 4350, Australia * Correspondence: [email protected] Received: 5 July 2019; Accepted: 13 August 2019; Published: 15 August 2019 Abstract: Selective logging is one of the main natural forest harvesting approaches worldwide and contributes nearly 15% of global timber needs. However, there are increasing concerns that ongoing selective logging practices have led to decreased forest product supply, increased forest degradation, and contributed to forest based carbon emissions. Taking cases of natural forest harvesting practices from the Tarai region of Nepal and Queensland Australia, this study assesses forest product recovery and associated carbon emissions along the timber production chain. Field measurements and product flow analysis of 127 commercially harvested trees up to the exit gate of sawmills and interaction with sawmill owners and forest managers reveal that: (1) Queensland selective logging has less volume recovery (52.8%) compared to Nepal (94.5%) leaving significant utilizable volume in the forest, (2) Stump volume represents 5.5% of total timber volume in Nepal and 3.9% in Queensland with an average stump height of 43.3 cm and 40.1 cm in Nepal and Queensland respectively, (3) Average sawn timber output from the harvested logs is 36.3% in Queensland against 3 3 61% in Nepal, (4) Nepal and Queensland leave 0.186 Mg C m− and 0.718 Mg C m− on the forest floor respectively, (5) Each harvested tree damages an average of five plant species in Nepal and four in Queensland predominantly seedlings in both sites, and (6) Overall logging related total emissions in 3 3 Queensland are more than double (1.099 Mg C m− ) those in Nepal (0.488 Mg C m− ). -
Forest Measurements for Natural Resource Professionals, 2001 Workshop Proceedings
Natural Resource Network Connecting Research, Teaching and Outreach 2001 Workshop Proceedings Forest Measurements for Natural Resource Professionals Caroline A. Fox Research and Demonstration Forest Hillsborough, NH Sampling & Management of Coarse Woody Debris- October 12 Getting the Most from Your Cruise- October 19 Cruising Hardware & Software for Foresters- November 9 UNH Cooperative Extension 131 Main Street, 214 Nesmith Hall, Durham, NH 03824 The Caroline A. Fox Research and Demonstration Forest (Fox Forest) is in Hillsborough, NH. Its focus is applied practical research, demonstration forests, and education and outreach for a variety of audiences. A Workshop Series on Forest Measurements for Natural Resource Professionals was held in the fall of 2001. These proceedings were prepared as a supplement to the workshop. Papers submitted were not peer-reviewed or edited. They were compiled by Karen P. Bennett, Extension Specialist in Forest Resources and Ken Desmarais, Forester with the NH Division of Forests and Lands. Readers who did not attend the workshop are encouraged to contact authors directly for clarifications. Workshop attendees received additional supplemental materials. Sampling and Management for Down Coarse Woody Debris in New England: A Workshop- October 12, 2001 The What and Why of CWD– Mark Ducey, Assistant Professor, UNH Department of Natural Resources New Hampshire’s Logging Efficiency– Ken Desmarais, Forester/ Researcher, Fox State Forest The Regional Level: Characteristics of DDW in Maine, NH and VT– Linda Heath, -
How Should We Measure the DBH of Multi-Stemmed Urban Trees? T Yasha A.S
Urban Forestry & Urban Greening 47 (2020) 126481 Contents lists available at ScienceDirect Urban Forestry & Urban Greening journal homepage: www.elsevier.com/locate/ufug How should we measure the DBH of multi-stemmed urban trees? T Yasha A.S. Magarika,*, Lara A. Romanb, Jason G. Henningc a Yale School of Forestry & Environmental Studies, 195 Prospect Street, New Haven, CT, 06511, USA b USDA Forest Service, Philadelphia Field Station, 100 N. 20thSt., Suite 205, Philadelphia, PA, 19103, USA c The Davey Institute and USDA Forest Service, 100 N. 20thSt., Suite 205, Philadelphia, PA, 19103, USA ARTICLE INFO ABSTRACT Handling Editor: Justin Morgenroth Foresters use diameter at breast height (DBH) to estimate timber volumes, quantify ecosystem services, and ffi Keywords: predict other biometrics that would be di cult to directly measure. But DBH has numerous problems, including Diameter at breast height a range of “breast heights” and challenges with applying this standard to divergent tree forms. Our study focuses Crown diameter on street trees that fork between 30 and 137 cm of height (hereafter “multi-stemmed trees”), which researchers Ecological monitoring have identified as particularly challenging in the ongoing development of urban allometric models, as well as Street tree consistency in measurements across space and time. Using a mixed methods approach, we surveyed 25 urban Tree allometry forestry practitioners in twelve cities in the northeastern United States (US) about the measurement and man- Urban forest agement of multi-stemmed street trees, and intensively measured 569 trees of three frequently planted and commonly multi-stemmed genera (Malus, Prunus, and Zelkova) in Philadelphia, PA, US. -
Continuous Forest Inventory 2014
Manual for Continuous Forest Inventory Field Procedures Bureau of Forestry Division of State Parks and Recreation February 2014 Massachusetts Department Conservation and Recreation Manual for Continuous Forest Inventory Field Procedures Massachusetts Department of Conservation and Recreation February, 2014 Preface The purpose of this manual is to provide individuals involved in collecting continuous forest inventory data on land administered by the Massachusetts Department of Conservation and Recreation with clear instructions for carrying out their work. This manual was first published in 1959. It has undergone minor revisions in 1960, 1961, 1964 and 1979, and 2013. Major revisions were made in April, 1968, September, 1978 and March, 1998. This manual is a minor revision of the March, 1998 version and an update of the April 2010 printing. TABLE OF CONTENTS Plot Location and Establishment The Crew 3 Equipment 3 Location of Established Plots 4 The Field Book 4 New CFI Plot Location 4 Establishing a Starting Point 4 The Route 5 Traveling the Route to the Plot 5 Establishing the Plot Center 5 Establishing the Witness Trees 6 Monumentation 7 Establishing the Plot Perimeter 8 Tree Data General 11 Tree Number 11 Azimuth 12 Distance 12 Tree Species 12-13 Diameter Breast Height 13-15 Tree Status 16 Product 17 Sawlog Height 18 Sawlog Percent Soundness 18 Bole Height 19 Bole Percent Soundness 21 Management Potential 21 Sawlog Tree Grade 23 Hardwood Tree Grade 23 Eastern White Pine Tree Grade 24 Quality Determinant 25 Crown Class 26 Mechanical Loss