Recent Advances in the Management of Hormone Refractory Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in the Management of Hormone Refractory Prostate Cancer Korean J Uro-Oncol 2004;2(3):147-153 Recent Advances in the Management of Hormone Refractory Prostate Cancer Mari Nakabayashi, William K. Oh Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA A typical treatment strategy after AAWD is to use secondary INTRODUCTION hormonal manipulations, although studies have not yet demonstrated a survival benefit with this class of treatment. Prostate cancer is the most common cancer in men in the Options in this category include (1) the secondary use of anti- United States and accounted for 29,900 deaths in 2003.1 androgens (e.g., high-dose bicalutamide, nilutamide), (2) thera- Although most men with advanced prostate cancer respond pies targeted against adrenal steroid synthesis (e.g., ketocona- initially to androgen deprivation therapies (ADT) by either zole, corticosteroids), and (3) estrogenic therapies (e.g. diethy- bilateral orchiectomy or leuteinizing hormone releasing hor- lstilbestrol). Symptomatic improvement and PSA responses mone (LHRH) analogues, patients eventually progress to an (defined as PSA decline >50% after treatment) have been androgen-independent state in which the initial ADT no longer reported in approximately 20% to 80% of patients with is adequate to control disease.2 Progression of the disease hormone-refractory prostate cancer (HRPC) with a typical manifests as an increase in serum prostate-specific antigen duration of response of 2 to 6 months. Toxicity is generally (PSA) or may be accompanied by radiographic evidence of mild for these oral therapies, although serious side effects, tumor growth. Here we report a brief summary of recent including adrenal insufficiency, liver toxicity, and thrombosis, advances in the management of hormone refractory prostate may occur (Table 1). cancer (HRPC). 1. Non-steroidal Antiandrogens SECONDARY HORMONAL THERAPIES Bicalutamide is a nonsteroidal antiandrogen, which has a dose-response effect in normalizing PSA levels. Thus, For patients with a rising PSA and/or radiographic evidence high-dose bicalutamide (150 to 200mg) may be associated with of progressive disease despite castration, physicians should first PSA declines >50% in up to 20% of patients with HRPC.4,5 consider anti-androgen withdrawal (AAWD). It has been Nilutamide is another nonsteroidal antiandrogen, with PSA reported that 15% to 30% of patients respond to AAWD with responses reported in approximately 40% of HRPC patients. 3 a median duration of response of 3.5 to 5.0 months. The These treatments are orally administrative drugs and well mechanism of AAWD has been attributed to alteration in the tolerated with the most common side effects such as hot flashes androgen receptor (AR) signaling, resulting in the antiandrogen and nausea. However, treatment is expensive ($1,000 US or behaving as an activator of the AR, rather than an inhibitor. more per month). On should wait 4-6 weeks after stopping an antiandrogen and 2. Inhibitors of Adrenal Steroid Synthesis repeat the PSA test. Approximately 5-10% of circulating androgens are produced Corresponding to:William K. Oh, Dana-Farber Cancer Institute, 44 Binney Street, D1230, Boston, MA 02115. Tel: 617-632-4524, by the adrenal glands. In HRPC, some prostate tumor cells may Fax: 617-632-2165, E-mail: [email protected] remain sensitive to lower levels of circulating androgens. 147 148 대한비뇨기종양학회지:제 2 권 제 3 호 2004 Table 1. Secondary hormonal therapies for HRPC ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ PSA response rates Therapy Number of trials References (≥50% decline) ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ High dose bicalutamide 2 20-22.5% 4, 5 Nilutamide 2 29-50% 18, 19 Corticosteroids 4 16-22% 8-11 Ketoconazole+Corticosteroids 4 27-62.5% 3, 6, 7, 20 Estrogenic therapies 5 24-81% 12-15, 17 ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ Ketoconazole has been noted for many years to effectively Table 2. 1st and 2nd generation chemotherapy for HRPC suppress testicular and adrenal androgen production. Recently, ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ PSA a phase III clinical trial (CALGB 9583) of high dose Measurable Therapy N decline References ketoconazole (400mg PO TID) and hydrocortisone (30mg PO response ≥50% each morning and 10mg every night) with AAWD demon- ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ strated this treatment has modest activity in 128 HRPC Mitoxantrone+Steroids 199 33% NR 8, 11 Estramustine+Vinblastine 83 41-61% 14-43% 26-28 patients.6 27% of patients responded to this treatment by PSA Estramustine+Docetaxel 131 63-82% 17-57% 29-32 criteria with mild toxicities. A recent phase II study also ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ suggested the similar response rate with half the traditional dose (200mg PO TID) with fewer side effects.7 Ketoconazole should be administered on an empty stomach, as it is better absorbed because of concerns about contamination.15,17 in an acid environment. Low-dose corticosteroids suppress androgens through CYTOTOXIC CHEMOTHERAPY negative feedback on the secretion of adrenocorticotrophic hormone (ACTH). Although inexpensive and well-tolerated, As recently as the early 1990s, cytotoxic chemotherapy for corticosteroids are associated with a modest overall response HRPC was considered to be inactive.21,22 In 1985, Eisenberger rate and a short duration of response compared to other et al. reported a total response of 4.5% of 17 chemotherapy secondary hormonal manipulations.8-11 This therapy is typically studies21, and in 1993 the review of 26 chemotherapy trials combined with ketoconazole, though it could be used alone. performed between 1987 and 1991 reported an overall response Prednisone (10mg PO QD) is an alternative to the hydro- rate of 8.7% (Table 2).23 cortisone dosing noted above. 1. 1st Generation Chemotherapy 3. Estrogenic Therapies Over the past decade, pessimism accompanying chemo- Diethylstilbestrol (DES) is a synthetic estrogen that reduces therapy for HRPC has been replaced by increasing evidence of testicular androgen production by inhibiting the pituitary- clinical efficacy.2 Improvements in measuring response (e.g. by gonadal axis. However, several studies suggest that DES and using PSA endpoints), and in supportive care treatments other estrogenic therapies may also induce PSA responses in including improved antiemetics, have contributed to this trend. 24-81% of HRPC patients, with median durations ranging from The first important milestone for chemotherapy in the manage- 3 to 7 months.12-15 The mechanism for the effect has been ment of HRPC was achieved in 1996 with a Canadian multi- postulated to be from either mitotic arrest or direct cytotoxic institutional phase III trial.11 One hundred sixty one men with effects on the cells.16 The dose of DES that has been studied symptomatic HRPC were randomized to either mitoxantrone has ranged from 1 to 3 mg daily. Similarly, the estrogenic (12mg/m2, every 3 weeks) plus prednisone (10mg daily) versus herbal therapy, PC-SPES, appeared to have similar rates of prednisone alone. The primary end point of the trial was response in HRPC, though this product is no longer available palliative response, and secondary end points included 50% Mari Nakabayashi․William K. Oh:Recent Advances in the Management of Hormone Refractory Prostate Cancer 149 reduction in the total amount of pain medication without an chemotherapy was active in HRPC, though these regimens had increase in pain, duration of responses and survival. Although only modest efficacy. no survival benefit was found, there was a significant decrease 2. 2nd Generation Chemotherapy in pain (29% vs 12%) as well as a significant prolongation in the duration of pain relief(43 wks vs 18 wks) in the Taxanes are among the most active class of drugs tested so mitoxantrone+prednisone arm. Palliation was also significantly far in phase II and III trials.2 Combination chemotherapy more likely in men with a PSA response than those without regimens of estramustine plus paclitaxel demonstrated PSA such a response (50% vs 29%). response rates of 38-53%, and were generally well-tolerated.33,34 In 1999, the Cancer and Leukemia Group B (CALGB) Docetaxel is a semisynthetic taxane with significant activity as reported a comparable phase III trial of 242 HRPC patients a single agent and in combination with estramustine.35-38 randomized to mitoxantrone (14mg/m2, every 3 wks) plus hy- Two landmark phase III studies comparing docetaxel- drocortisone (40mg daily) versus hydrocortisone alone.8 The containing regimens to mitoxantrone were recently reported primary endpoint of this study was overall survival, and (Table 3).39 In SWOG 9916, 674 patients were randomized to secondary end points were time to disease progression, ob- receive docetaxel (60-70mg/m2 every 3 wks) plus estramustine jective and PSA response rates and quality of life (QOL). (280 mg TID for 5 days every 21 days) (n=338) or mito- Though no difference in survival was noted, improvements in xantrone (12-14mg/m2) plus prednisone (5 mg BID daily) pain control and QOL were noted in the mitoxantrone arm. (n=336). Overall survival was longer in the docetaxel plus Based on these 2 randomized trials, mitoxantrone was approved estramustine arm (17.5 months vs 15.6 months), and median in
Recommended publications
  • A Phase II Study of the Novel Proteasome Inhibitor Bortezomib In
    Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) A Phase II Study of the Novel Proteas ome Inhibitor Bortezomib in Combination with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory I Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) MSKCC THERAPEUTIC/DIAGNOSTIC PROTOCOL Principal Investigator: John Gerecitano, M.D., Ph.D. Co-Principal Carol Portlock, M.D. Investigator(s): IFormerly: A Phase I/II Study of the Nove l Proteasome Inhibitor Bortezomib in Combinati on with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) Amended: 07/25/12 Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) Investigator(s): Paul Hamlin, M.D. Commack, NY Steven B. Horwitz, M.D. Philip Schulman, M.D. Alison Moskowitz, M.D. Stuart Lichtman, M.D Craig H. Moskowitz, M.D. Stefan Berger, M.D. Ariela Noy, M.D. Julie Fasano, M.D. M. Lia Palomba, M.D., Ph.D. John Fiore, M.D. Jonathan Schatz, M.D. Steven Sugarman, M.D David Straus, M.D. Frank Y. Tsai, M.D. Andrew D. Zelenetz, M.D., Ph.D. Matthew Matasar, M.D Rockville Center, NY Mark L. Heaney, M.D., Ph.D. Pamela Drullinksy, M.D Nicole Lamanna, M.D. Arlyn Apollo, M.D. Zoe Goldberg, M.D. Radiology Kenneth Ng, M.D. Otilia Dumitrescu, M.D. Tiffany Troso-Sandoval, M.D. Andrei Holodny, M.D. Sleepy Hollow, NY Nuclear Medicine Philip Caron, M.D. Heiko Schoder, M.D. Michelle Boyar, M.D.
    [Show full text]
  • VELCADE® (Bortezomib) for Injection
    1 VELCADE® (bortezomib) for Injection 2 PRESCRIBING INFORMATION 3 DESCRIPTION 4 VELCADE® (bortezomib) for Injection is an antineoplastic agent available for intravenous 5 injection (IV) use only. Each single dose vial contains 3.5 mg of bortezomib as a sterile 6 lyophilized powder. Inactive ingredient: 35 mg mannitol, USP. 7 Bortezomib is a modified dipeptidyl boronic acid. The product is provided as a mannitol boronic 8 ester which, in reconstituted form, consists of the mannitol ester in equilibrium with its 9 hydrolysis product, the monomeric boronic acid. The drug substance exists in its cyclic 10 anhydride form as a trimeric boroxine. 11 The chemical name for bortezomib, the monomeric boronic acid, is [(1R)-3-methyl-1-[[(2S)-1- 12 oxo-3-phenyl-2-[(pyrazinylcarbonyl) amino]propyl]amino]butyl] boronic acid. 13 Bortezomib has the following chemical structure: O OH H N N B N OH H O N 14 15 The molecular weight is 384.24. The molecular formula is C19H25BN4O4. The solubility of 16 bortezomib, as the monomeric boronic acid, in water is 3.3 to 3.8 mg/mL in a pH range of 2 to 17 6.5. 18 CLINICAL PHARMACOLOGY 19 Mechanism of Action 20 Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in 21 mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated 22 proteins. The ubiquitin-proteasome pathway plays an essential role in regulating the intracellular 23 concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of 24 the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling 25 cascades within the cell.
    [Show full text]
  • Thalidomide Celgene Pregnancy Prevention Programme Information
    TCPPP Healthcare Professional Booklet Thalidomide Celgene ® Pregnancy Prevention Programme Information for Healthcare Professionals ® Prescribing or Dispensing Thalidomide Celgene Celgene representative contact details: AM Mangion Ltd, Regulatory Office, “Mangion Building”, New Street Off Valletta Road, Luqa. Phone: +356 239 76333 Fax: +356 239 76123 Email: [email protected] Medical Information queries: [email protected] 2014 © Celgene Corporation Page 1 of 19 RMP/THA/001/14-03/M TCPPP Healthcare Professional Booklet This booklet is intended for healthcare professionals involved in prescribing or dispensing Thalidomide Celgene ®, and contains information about: Preventing harm to unborn babies: If Thalidomide Celgene® is taken during pregnancy it can cause severe birth defects or death to an unborn baby. Other side effects of Thalidomide Celgene®: The most commonly observed adverse reactions associated with the use of Thalidomide Celgene® in combination with melphalan and prednisone are: neutropenia, leukopenia, constipation, somnolence, paraesthesia, peripheral neuropathy, anaemia, lymphopenia, thrombocytopenia, dizziness, dysaesthesia, tremor and peripheral oedema. Further information and recommended precautions can be found in the Thalidomide Celgene® Summary of Product Characteristics (SmPC). Thalidomide Celgene® Pregnancy Prevention Programme: This Programme is designed to make sure that unborn babies are not exposed to Thalidomide Celgene®. It will provide you with information about how to follow the programme and explain your responsibilities. This booklet will help you understand these problems and make sure you know what to do before prescribing and dispensing Thalidomide Celgene®. For your patients’ own health and safety, please read this booklet carefully. You must ensure that your patients fully understand what you have told them about Thalidomide Celgene® before starting treatment.
    [Show full text]
  • Study Protocol and Statistical Analysis Plan
    Official Title: A Phase III, Multicenter, Randomized Study of Atezolizumab (Anti-PD- L1 Antibody) in Combination With Enzalutamide Versus Enzalutamide Alone in Patients With Metastatic Castration-Resistant Prostate Cancer After Failure of an Androgen Synthesis Inhibitor and Failure of, Ineligibility for, or Refusal of a Taxane Regimen NCT Number: NCT03016312 Document Date: Protocol Version 8: 14 February 2020 PROTOCOL TITLE: A PHASE III, MULTICENTER, RANDOMIZED STUDY OF ATEZOLIZUMAB (ANTIPD-L1 ANTIBODY) IN COMBINATION WITH ENZALUTAMIDE VERSUS ENZALUTAMIDE ALONE IN PATIENTS WITH METASTATIC CASTRATION-RESISTANT PROSTATE CANCER AFTER FAILURE OF AN ANDROGEN SYNTHESIS INHIBITOR AND FAILURE OF, INELIGIBILITY FOR, OR REFUSAL OF A TAXANE REGIMEN PROTOCOL NUMBER: CO39385 VERSION NUMBER: 8 EUDRACT NUMBER: 2016-003092-22 IND NUMBER: 131196 TEST PRODUCTS: Atezolizumab (RO5541267) and enzalutamide MEDICAL MONITOR: , M.D., Ph.D. SPONSOR: F. Hoffmann-La Roche Ltd DATE FINAL: Version 1: 29 September 2016 DATES AMENDED: Version 2: 7 March 2017 Version 3: 4 April 2017 Version 4: 29 June 2017 Version 5: 2 March 2018 Version 6: 23 August 2018 Version 7: 5 August 2019 Version 8: See electronic date stamp below. PROTOCOL AMENDMENT APPROVAL Date and Time (UTC) Title Approver's Name 14-Feb-2020 17:27:37 Company Signatory CONFIDENTIAL This clinical study is being sponsored globally by F. Hoffmann-La Roche Ltd of Basel, Switzerland. However, it may be implemented in individual countries by Roche’s local affiliates, including Genentech, Inc. in the United States. The information contained in this document, especially any unpublished data, is the property of F. Hoffmann-La Roche Ltd (or under its control) and therefore is provided to you in confidence as an investigator, potential investigator, or consultant, for review by you, your staff, and an applicable Ethics Committee or Institutional Review Board.
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • Induction with Mitomycin C, Doxorubicin, Cisplatin And
    British Journal of Cancer (1999) 80(12), 1962–1967 © 1999 Cancer Research Campaign Article no. bjoc.1999.0627 Induction with mitomycin C, doxorubicin, cisplatin and maintenance with weekly 5-fluorouracil, leucovorin for treatment of metastatic nasopharyngeal carcinoma: a phase II study RL Hong1, TS Sheen2, JY Ko2, MM Hsu2, CC Wang1 and LL Ting3 Departments of 1Oncology, 2Otolaryngology and 3Radiation Therapy, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan Summary The combination of cisplatin and 5-fluorouracil (5-FU) (PF) is the most popular regimen for treating metastatic nasopharyngeal carcinoma (NPC) but it is limited by severe stomatitis and chronic cisplatin-related toxicity. A novel approach including induction with mitomycin C, doxorubicin and cisplatin (MAP) and subsequent maintenance with weekly 5-FU and leucovorin (FL) were designed with an aim to reduce acute and chronic toxicity of PF. Thirty-two patients of NPC with measurable metastatic lesions in the liver or lung were entered into this phase II trial. Mitomycin C 8 mg m–2, doxorubicin 40 mg m–2 and cisplatin 60 mg m–2 were given on day 1 every 3 weeks as initial induction. After either four courses or remission was achieved, patients received weekly dose of 5-FU 450 mg m–2 and leucovorin 30 mg m–2 for maintenance until disease progression. With 105 courses of MAP given, 5% were accompanied by grade 3 and 0% were accompanied by grade 4 stomatitis. The dose-limiting toxicity of MAP was myelosuppression. Forty per cent of courses had grade 3 and 13% of courses had grade 4 leukopenia.
    [Show full text]
  • The Limitations of DNA Interstrand Cross-Link Repair in Escherichia Coli
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 7-12-2018 The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli Jessica Michelle Cole Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Cole, Jessica Michelle, "The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli" (2018). Dissertations and Theses. Paper 4489. https://doi.org/10.15760/etd.6373 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli by Jessica Michelle Cole A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Justin Courcelle, Chair Jeffrey Singer Rahul Raghavan Portland State University 2018 i Abstract DNA interstrand cross-links are a form of genomic damage that cause a block to replication and transcription of DNA in cells and cause lethality if unrepaired. Chemical agents that induce cross-links are particularly effective at inactivating rapidly dividing cells and, because of this, have been used to treat hyperproliferative skin disorders such as psoriasis as well as a variety of cancers. However, evidence for the removal of cross- links from DNA as well as resistance to cross-link-based chemotherapy suggests the existence of a cellular repair mechanism.
    [Show full text]
  • Combining Milatuzumab with Bortezomib, Doxorubicin, Or Dexamethasone Improves Responses in Multiple Myeloma Cell Lines Rhona Stein,1Mitchell R
    CancerTherapy: Preclinical Combining Milatuzumab with Bortezomib, Doxorubicin, or Dexamethasone Improves Responses in Multiple Myeloma Cell Lines Rhona Stein,1Mitchell R. Smith,2 Susan Chen,1Maria Zalath,1and David M. Goldenberg1 Abstract Purpose: The humanized anti-CD74 monoclonal antibody, milatuzumab, is in clinical evaluation for the therapy of multiple myeloma (MM). The ability of milatuzumab to increase the efficacy of bortezomib, doxorubicin, and dexamethasone was examined in three human CD74+ MM cell lines, CAG, KMS11, KMS12-PE, and one CD74-MM cell line, OPM-2. Experimental Design: Activity of milatuzumab as a monotherapy and combined with the drugs was evaluated by studying in vitro cytotoxicity, signaling and apoptotic pathways, and in vivo therapeutic activity in severe combined immunodeficient (SCID) mouse models of MM. Results: Given as a monotherapy, cross-linked milatuzumab, but not milatuzumab alone, yielded sig- nificant antiproliferative effects in CD74+ cells.The combination of cross-linked milatuzumab with bortezomib, doxorubicin, or dexamethasone caused more growth inhibition than either cross-linked milatuzumab or drug alone, producing significant reductions in the IC50 of the drugs when combined. Efficacy of combined treatments was accompanied by increased levels of apoptosis measured by increases of activated caspase-3 and hypodiploid DNA. Both milatuzumab and bortezomib affect the nuclear factor-nB pathwayinCAGMMcells. In CAG-or KMS11-SCIDxenograftmodels ofdisseminated MM, milatuzumab more than doubled median survival time, compared withup to a 33% increase in median survival withbortezomib but no significant benefit with doxorubicin. Moreover, combining milatuzumabandbortezomibincreasedsurvivalsignificantlycomparedwitheither treatmentalone. Conclusions:The therapeutic efficacies of bortezomib, doxorubicin, and dexamethasone are en- hanced in MM cell lines when given in combination with milatuzumab, suggesting testing these combinations clinically.
    [Show full text]
  • Adverse Effects in Women: Implications for Drug Development and Regulatory Policies
    Review For reprint orders, please contact [email protected] Adverse effects in women: implications for drug development and regulatory policies Expert Rev. Clin. Pharmacol. 4(4), 453–466 (2011) Ameeta Parekh†1, The requirement to establish safety of drugs prior to marketing has been in place since 1938 by Emmanuel O Fadiran1, the US Food, Drug and Cosmetic Act and is by no means a new concept. The efficacy regulations Kathleen Uhl2 were enacted in 1962 via the Kefauver–Harris Amendment and the drug approval process has and Douglas C evolved thereafter. The assessment of safety and efficacy of drug products is made by 2 pharmaceutical companies during drug development, which then goes through a regulatory Throckmorton review by the US FDA for the determination of market approval or nonapproval. The drug 1Food and Drug Administration, development and regulatory approval processes have endured close ongoing scrutiny by Office of Women’s Health, 10903 New Hampshire Avenue, regulatory bodies, the public, US Congress and academic and private organizations and, as a Silver Spring, MD 10993, USA result, have ensured continual refinement. Over the years, evidence has been emerging on varied 2Food and Drug Administration, drug responses in subgroup populations, and the underlying biology associated with age, race Center for Drug Evaluation and and sex as demographic variables have been examined. The resulting growing knowledge of Research, Office of Medical Policy, 10903 New Hampshire Avenue, disease burden, treatment response and disparate outcomes has generated opportunities to Silver Spring, MD 10993, USA streamline and improve treatment outcomes in these populations. This article discusses the †Author for correspondence: historical context of women’s participation in clinical drug trials submitted to the FDA for Tel.: +1 301 796 9445 regulatory review and approval purposes.
    [Show full text]
  • WO 2018/175958 Al 27 September 2018 (27.09.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/175958 Al 27 September 2018 (27.09.2018) W !P O PCT (51) International Patent Classification: A61K 31/53 (2006 .01) A61P 35/00 (2006 .0 1) C07D 251/40 (2006.01) (21) International Application Number: PCT/US20 18/024 134 (22) International Filing Date: 23 March 2018 (23.03.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/476,585 24 March 2017 (24.03.2017) US (71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 1111 Franklin Street, Twelfth Floor, Oakland, CA 94607-5200 (US). (72) Inventors: NOMURA, Daniel, K.; 4532 Devenport Av enue, Berkeley, CA 94619 (US). ANDERSON, Kimberly, E.; 8 Marchant Court, Kensington, CA 94707 (US). (74) Agent: LEE, Joohee et al; Mintz Levin Cohn Ferris Glovsky And Popeo, P.C., One Financial Center, Boston, MA 021 11 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • New Drugs Are Not Enough‑Drug Repositioning in Oncology: an Update
    INTERNATIONAL JOURNAL OF ONCOLOGY 56: 651-684, 2020 New drugs are not enough‑drug repositioning in oncology: An update ROMINA GABRIELA ARMANDO, DIEGO LUIS MENGUAL GÓMEZ and DANIEL EDUARDO GOMEZ Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina Received August 15, 2019; Accepted December 16, 2019 DOI: 10.3892/ijo.2020.4966 Abstract. Drug repositioning refers to the concept of discov- 17. Lithium ering novel clinical benefits of drugs that are already known 18. Metformin for use treating other diseases. The advantages of this are that 19. Niclosamide several important drug characteristics are already established 20. Nitroxoline (including efficacy, pharmacokinetics, pharmacodynamics and 21. Nonsteroidal anti‑inflammatory drugs toxicity), making the process of research for a putative drug 22. Phosphodiesterase-5 inhibitors quicker and less costly. Drug repositioning in oncology has 23. Pimozide received extensive focus. The present review summarizes the 24. Propranolol most prominent examples of drug repositioning for the treat- 25. Riluzole ment of cancer, taking into consideration their primary use, 26. Statins proposed anticancer mechanisms and current development 27. Thalidomide status. 28. Valproic acid 29. Verapamil 30. Zidovudine Contents 31. Concluding remarks 1. Introduction 2. Artesunate 1. Introduction 3. Auranofin 4. Benzimidazole derivatives In previous decades, a considerable amount of work has been 5. Chloroquine conducted in search of novel oncological therapies; however, 6. Chlorpromazine cancer remains one of the leading causes of death globally. 7. Clomipramine The creation of novel drugs requires large volumes of capital, 8. Desmopressin alongside extensive experimentation and testing, comprising 9. Digoxin the pioneer identification of identifiable targets and corrobora- 10.
    [Show full text]
  • Antitumor Effects of Bortezomib (PS-341) on Primary Effusion Lymphomas
    Leukemia (2004) 18, 1699–1704 & 2004 Nature Publishing Group All rights reserved 0887-6924/04 $30.00 www.nature.com/leu Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas JAn1, Y Sun1, M Fisher1 and MB Rettig1,2 1VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; and 2Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA Primary effusion lymphomas (PELs) are a rare type of non- treatment of refractory multiple myeloma, where it has an Hodgkin’s lymphoma that are resistant to cytotoxic chemother- acceptable toxicity profile.4–6 By inhibiting the proteasome, apy. PELs manifest constitutive activation of nuclear factor kappa B (NF-jB), and inhibition of NF-jB induces apoptosis of which degrades proteins that are marked by ubiquitination, PELs and sensitizes to tumor necrosis factor-related apoptosis- bortezomib modulates the cellular concentrations of hundreds inducing ligand (TRAIL)-induced death. Bortezomib (PS-341), a of proteins that are involved in a wide variety of functions, peptidyl boronic acid inhibitor of the proteasome, is a potent including cell cycle progression, signal transduction, and agent against a wide range of hematologic malignancies and apoptosis.7,8 For example, the proteasome regulates the activity has been shown to inhibit NF-jB. Thus, we examined the of the NF-kB pathway, in that the degradation of I kappa B (IkB), cytotoxic effects of bortezomib alone and in combination with the NF-kB inhibitory protein, is dependent upon the ubiquitin– various drugs. Bortezomib potently inhibited NF-jB in PEL cells 9 in a dose-dependent manner.
    [Show full text]