Multiwavelength, Machine Learning, and Parallax Studies of X-Ray Binaries in Three Local Group Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Multiwavelength, Machine Learning, and Parallax Studies of X-Ray Binaries in Three Local Group Galaxies Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-7-2018 1:30 PM Multiwavelength, Machine Learning, and Parallax Studies of X-ray Binaries in Three Local Group Galaxies Robin Arnason The University of Western Ontario Supervisor Barmby, Pauline The University of Western Ontario Graduate Program in Astronomy A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Robin Arnason 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the External Galaxies Commons Recommended Citation Arnason, Robin, "Multiwavelength, Machine Learning, and Parallax Studies of X-ray Binaries in Three Local Group Galaxies" (2018). Electronic Thesis and Dissertation Repository. 5931. https://ir.lib.uwo.ca/etd/5931 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract X-ray binary stars are rare systems consisting of a black hole or neutron star and a main- sequence companion star. They are useful probes of galaxy properties and interesting labora- tories for extreme physical conditions. In this thesis, I investigated the X-ray binary population of three galaxies in the Local Group. The Sculptor Dwarf Spheroidal Galaxy offers the chance to study a primordial low-mass X-ray binary (LMXB) population in an isolated, low-metallicity environment. Combining X- ray, optical, and infrared observations, I have studied nine previously identified and discovered four additional LMXB candidates in this galaxy. Of these candidates, all but one are either background galaxies or foreground stars, meaning that Sculptor is presently effectively devoid of bright LMXBs. If Sculptor is able to retain primordial LMXBs at a similar rate to globular clusters, it is likely that bright XRBs in globular clusters observed in the present day were dynamically formed. The Andromeda Galaxy has the largest catalogue of Chandra-studied X-ray sources of any nearby galaxy. I have used this population to test a proof-of-concept method for identifying X-ray binary candidates using machine learning algorithms trained on known sources. After testing a variety of commonly used algorithms, I find that the best-performing random forest algorithm can identify X-ray binary candidates with ∼ 85% accuracy. I have identified 16 new strong X-ray binary candidates and find that 4 sources classified as X-ray binaries by this method coincide with star clusters identified by the Panchromatic Hubble Andromeda Treasury project. The Milky Way’s X-ray binary population is the easiest to study but the most challenging for which to accurately measure distance. I have crossmatched Galactic X-ray binary catalogs to the second data release of the Gaia mission, finding candidate counterparts for 86 Galactic X-ray binaries. Distances to Gaia candidate counterparts are systematically smaller than those measured using Type I X-ray bursts, suggesting that these bursts do not consistently reach the Eddington limit. High-mass X-ray binaries are correlated with the Galaxy’s spiral arms and low-mass X-ray binaries are anti-correlated with the Galaxy’s spiral arms at a low level of significance. Keywords: binaries: X-ray; Galaxies: Local Group; Galaxies, individual: Sculptor Dwarf Spheroidal, M31, Milky Way; stars: black holes, neutron; X-rays: bursts – Galaxy: structure; techniques: parallaxes, methods: statistical, observational i Co-Authorship Statement All research is the result of collaboration; this thesis is no exception. Each of the three projects presented in this thesis was led by me, and I performed the analysis. I have benefited greatly from guidance, suggestions, and assistance in interpretation from my co-authors: my supervi- sor Dr. Pauline Barmby, Dr. Arash Bahramian, Dr. Steve Zepf, Dr. Thomas Maccarone, Dr. Neven Vulic, Hadi Papei, and Dr. Mark Gorski. In Chapter 2, Dr. Maccarone and Dr. Zepf were the PIs of the original observations that made the project possible. They also provided assistance in interpretation. Dr. Barmby performed the reduction of the Spitzer data - I performed my analysis on the completed Spitzer catalogues. Dr. Bahramian took the Chandra observations that I reduced and ran them in ACISEXTRACT. I performed the analysis and interpretation of the Chandra photometry and spectroscopy that are the products of ACISEXTRACT. Dr. Barmby and Dr. Bahramian also assisted in interpretation of the results. This paper is submitted to Monthly Notices of the Royal Astronomical Society. In Chapter 3, Dr. Vulic created the Chandra catalogs used in the study. I joined the individual catalogs for each field, and performed all of the analysis. Dr. Vulic and Dr. Barmby provided guidance both on the catalogue itself, as well as interpretation of the results. This paper will be submitted shortly. In Chapter 4, Dr. Barmby and Mr. Papei performed the work of investigating the method used in the literature to measure distance to each X-ray binary in our matched sample. I cross- matched the catalogues to Gaia, though Mr. Papei performed the query to the Bailer-Jones catalogue to obtain the Gaia distance to each object. I constructed the simulation and per- formed the analysis. Dr. Barmby, Dr. Gorski, and Mr. Papei all provided guidance on the interpretation of results. This paper will be submitted shortly. ii Epigraph “The popular stereotype of the researcher is that of a skeptic and a pessimist. Nothing could be further from the truth! Scientists must be optimists at heart, in order to block out the incessant chorus of those who say ‘It cannot be done.’ ” - Sid Meier’s Alpha Centauri (1999) iii Dedication For Mom, Dad, Holly, Ba, and all the birds. iv Acknowledgements This thesis has, like many, been a mix of exciting discovery and keyboard-breaking frustration. No one knows this better than my supervisor, Dr. Pauline Barmby. For the last four years you’ve been my mentor, my ally, my collaborator, and my friend. You taught me by example that being a good scientist isn’t just a matter of doing good research – we also have a duty to make a positive impact on our community, whether on campus or elsewhere. I could not have had a better supervisor. The direction of my thesis has benefited immensely from guidance from my Advisory Committee members. Thanks to Dr. Jan Cami and Dr. Giovanni Fanchini, who gave me useful research/career advice and struck a balance between pushing me forward and letting me work out the details. Special thanks also to the collaborators who I have had the privilege of working with over the course of this degree: Dr. Arash Bahramian, Dr. Tom Maccarone, Dr. Steve Zepf, Dr. Neven Vulic, Dr. Mark Gorski, and Hadi Papei. Without your guidance and assistance my thesis would not have gotten off the ground. Thanks to the wonderful staff and faculty at Western P&A who have been there to help in matters academic and bureaucratic: Clara Buma, Brian Davis, Phin Perquin, Henry Leparskas, Dr. Sarah Gallagher, Dr. Martin Houde, Dr. Els Peeters, Dr. Stan Metchev, Dr. Paul Wiegert, Dr. Silvia Mittler, and Dr. Andy Pon. Good friends are rarer than X-ray binaries, and I’ve been blessed to have many here at Western. Keegan, Moh, Dan, Megan, Amanda, Kendra, Isabelle, Hadi, Ghazal, Sina, Sahar, Laura, Aycha, Shannon, Amgad, Jeff, Cameron, and Ellie. Thanks for all the great times and for your support, I couldn’t have done it without you. I also owe my success to my friends at home and abroad who have been there in spirit as I worked my way through this degree. Reggie, Sarah, Arash, Andrei, Ana, Stephen P., Abbie, Caitie, Kaitlyn, Stephen B., Megan, Mitch, Ryley, Curt, Karl, Ed, Kabir, Nathan, Kris, Kaylie, Dave, Amy, and Pearl. Thanks always to my family, who has helped and supported me since the very beginning. Mom, you taught me the value of effective writing and communication and you’re the best secret baking advice-giver I could ask for. Dad, you helped ignite my sense of wonder and curiosity in the mysteries of the universe. Holly, you’ve been my forever friend since my first moment in this world. Ba, you’ve always believed that I’ve had the smarts to do whatever I wanted, ever since I was very small. Thanks for the love and the support – I love you. v Contents Abstract i Co-Authorship Statement ii Epigraph iii Dedication iv Acknowledgements v List of Figures ix List of Tables xi 1 Introduction 1 1.1 Compact Stellar Remnants . 1 1.2 X-ray Binary Formation . 6 1.3 Galaxies and the Local Group . 11 1.4 X-ray Binaries in the Local Group . 17 2 Multiwavelength survey of Sculptor Dwarf X-ray Sources 32 2.1 Introduction . 32 2.1.1 XRB Production . 32 2.1.2 XRB Populations in Dwarf Galaxies . 34 2.1.3 Sculptor Dwarf Spheroidal Galaxy . 35 2.2 Data . 35 2.2.1 Chandra Data Reduction . 35 2.2.2 Gemini Imaging Data Reduction . 36 2.2.3 Gemini Spectroscopic Data . 38 2.2.4 Spitzer Data . 38 2.2.5 Matching . 39 2.3 Analysis . 39 2.3.1 SD X-1 . 40 2.3.2 SD X-2 . 41 2.3.3 SD X-3 . 45 2.3.4 SD X-4 . 45 2.3.5 SD X-5 . 45 vi 2.3.6 SD X-6 . 48 2.3.7 SD X-7 . 48 2.3.8 SD X-8 . 48 2.3.9 SD X-9 . 49 2.3.10 SD X-10 . 49 2.3.11 SD X-11 . 49 2.3.12 SD X-12 .
Recommended publications
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Authentic Data in the Classroom with the Sloan Digital Sky Survey
    Proc. of the GHOU 2007 in Tokyo Authentic Data in the Classroom with the Sloan Digital Sky Survey M. Jordan Raddick* 1 Student engagement with the process of science is a proven part of high­quality science education, but authentic science activities can be difficult in astronomy because of the difficulty students have in taking data. This paper describes how the Sloan Digital Sky Survey (SDSS) contributes to solving this problem by making its entire dataset available to students and the public, free of charge. The survey's SkyServer website (http://skyserver.sdss.org) includes simple tools to browse and search the data, as well as projects that use the data to teach science. The dataset is also a great source of independent research projects for students. 1. Introduction for each star or galaxy, including magnitudes and object types. Images are available as FITS files. Movements in science education reform in the The survey also measures follow­up spectra for United States and around the world frequently cite stars, galaxies and quasars. These spectra run from engagement with the process of science as a key 3800 to 9200 Ångstroms, and have a resolution of component of effective science learning, and 1.8 Ångstroms per pixel. They are available as GIF scientific inquiry as an important part of images or FITS files, and detailed line widths and understanding science [1,2]. strengths are available for each spectral line. Laboratory activities in other science subjects frequently make use of student inquiry labs, in which 3. SkyServer students make their own observations, interpret the results, and draw conclusions.
    [Show full text]
  • Direct N-Body Simulations of Globular Clusters--III. Palomar\, 4 on An
    MNRAS 000, 1–11 (2013) Preprint 14 September 2018 Compiled using MNRAS LATEX style file v3.0 Direct N-body simulations of globular clusters – III. Palomar4 on an eccentric orbit Akram Hasani Zonoozi1⋆, Hosein Haghi1, Pavel Kroupa2,3, Andreas H.W. K¨upper4†, Holger Baumgardt5 1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), PO Box 11365-9161, Zanjan, Iran 2Helmholtz-Institut f¨ur Strahlen-und Kernphysik (HISKP), Universit¨at Bonn, Nussallee 14-16, D-53115 Bonn, Germany 3Charles University in Prague, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic 4Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA 5School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia Accepted .... Received ABSTRACT Palomar 4 is a low-density globular cluster with a current mass ≈ 30000 M⊙in the outer halo of the Milky Way with a two-body relaxation time of the order of a Hubble time. Yet, it is strongly mass segregated and contains a stellar mass function depleted of low-mass stars. Pal 4 was either born this way or it is a result of extraordi- nary dynamical evolution. Since two-body relaxation cannot explain these signatures alone, enhanced mass loss through tidal shocking may have had a strong influence on Pal 4. Here, we compute a grid of direct N-body simulations to model Pal4 on various eccentric orbits within the Milky Way potential to find likely initial conditions that reproduce its observed mass, half-light radius, stellar MF-slope and line-of-sight ve- locity dispersion.
    [Show full text]
  • On the X-Ray and Optical Properties of the Be Star HD 110432: a Very Hard-Thermal X-Ray Emitter
    On the X-ray and optical properties of the Be star HD 110432: a very hard-thermal X-ray emitter Raimundo LOPES DE OLIVEIRA Filho (1,2), Christian MOTCH (2), Myron A. SMITH (3), Ignacio NEGUERUELA (4) and Jose M. TORREJON (4) (1) Instituto de Astronomia, Geof'{i}sica e Ci^encias Atmosf'ericas, Universidade de S~ao Paulo, Brazil; (2) Observatoire Astronomique de Strasbourg, Universit'e Louis Pasteur, France; (3) Catholic University of America, USA; (4) Universidad de Alicante, Spain HD 110432 is the first proposed, and best studied, member of a growing group of Be stars with X-ray properties similar to $gamma$ Cas. These stars exhibit hard-thermal X-rays that are variable on all measurable timescales. This emission contrasts with the soft emission of ``normal" massive stars and with the nonthermal emission of all well known Be/X-ray binaries -- so far, all Be + neutron star systems. In this work we present X-ray spectral and timing properties of HD 110432 from three XMM-{it Newton} observations in addition to new optical spectroscopic observations. Like $gamma$ Cas, the X-rays of HD 110432 appear to have a thermal origin, as supported by strongly ionized FeXXV and FeXXVI lines detected in emission. A fluorescent iron feature at 6.4 keV is present in all observations, while the FeXXVI Ly$beta$ line is present in two of them. Its X-ray spectrum, complex and time variable, is well described in each observation by three thermal plasmas with temperatures ranging between 0.2--0.7, 3--6, and 16--37 keV.
    [Show full text]
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • Young Globular Clusters and Dwarf Spheroidals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Young Globular Clusters and Dwarf Spheroidals Sidney van den Bergh Dominion Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council of Canada 5071 West Saanich Road Victoria, British Columbia, V8X 4M6 Canada ABSTRACT Most of the globular clusters in the main body of the Galactic halo were formed almost simultaneously. However, globular cluster formation in dwarf spheroidal galaxies appears to have extended over a significant fraction of a Hubble time. This suggests that the factors which suppressed late-time formation of globulars in the main body of the Galactic halo were not operative in dwarf spheroidal galaxies. Possibly the presence of significant numbers of “young” globulars at RGC > 15 kpc can be accounted for by the assumption that many of these objects were formed in Sagittarius-like (but not Fornax-like) dwarf spheroidal galaxies, that were subsequently destroyed by Galactic tidal forces. It would be of interest to search for low-luminosity remnants of parental dwarf spheroidals around the “young” globulars Eridanus, Palomar 1, 3, 14, and Terzan 7. Furthermore multi-color photometry could be used to search for the remnants of the super-associations, within which outer halo globular clusters originally formed. Such envelopes are expected to have been tidally stripped from globulars in the inner halo. Subject headings: Globular clusters - galaxies: dwarf The galaxy is, in fact, nothing but a congeries of innumerable stars grouped together in clusters. Galileo (1610) –2– 1. Introduction The vast majority of Galactic globular clusters appear to have formed at about the same time (e.g.
    [Show full text]
  • Arxiv:1307.6035V1 [Astro-Ph.GA] 23 Jul 2013 Uaeydtriigterpoete,Ms Ftegalac- the of Most Properties, Their Determining Curately Et Ferraro the 1997; on Heggie 2012)
    Draft version July 24, 2013 A Preprint typeset using LTEX style emulateapj v. 12/16/11 STAR COUNT DENSITY PROFILES AND STRUCTURAL PARAMETERS OF 26 GALACTIC GLOBULAR CLUSTERS P. Miocchi1, B. Lanzoni1, F.R. Ferraro1, E. Dalessandro1, E. Vesperini2, M. Pasquato3 , G. Beccari4, C. Pallanca1, and N. Sanna1 1Dipartimento di Fisica e Astronomia, Universit`adi Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy 2Department of Astronomy, Indiana University, Bloomington, Indiana 47405, USA 3Department of Astronomy & Center for Galaxy Evolution Research, Yonsei University, and Yonsei University Observatory, Seoul 120-749, Republic of Korea 4European Organization for Astronomical Research in the Southern Hemisphere, K. Schwarzschild-Str. 2, 85748 Garching, Germany Draft version July 24, 2013 ABSTRACT We used a proper combination of high-resolution HST observations and wide-field ground based data to derive the radial star density profile of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This is the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data
    [Show full text]
  • Kiski Astronomers at Cherry Springs: Perseids - August, 2015
    Kiski Astronomers at Cherry Springs: Perseids - August, 2015 After finishing my trip to the Lehigh Valley Amateur Astronomical Society ’s Pulpit Rock Observatory the weekend of August 7 th – 9th, I headed over to Cherry Springs to take in the annual Perseid Meteor shower with several other members of the Kiski Astronomers. Monday 08/10/2015: Leaving a damp Pulpit Rock behind, I made the 3 hour drive from Eastern PA to the Astronomers Paradise – Cherry Springs State Park. Arrived late afternoon to find Bob K already there, and setup my camp across from him. Assembled the telescope, but wasn’t able to do much more, as clouds rolled in at sunset. Headed inside to read and early to bed. Tuesday 08/11/2015: Spent the day setting up a few more camping items and visiting with Bob N from the Kiski Club and Mike P from Niagara Canada who arrived and setup with us, and planning for the observing that evening. The sky stayed clear for the afternoon, and once the sun went down, we all got to work. Using my StellaCam-3 videocamera and 8” SCT optical tube on a C-Gem mount, I started working thru my constellation survey, chasing faint galaxies in Ursa Major. These included NGC-3065 & 3066, 3259, 3348, and 3516. Would like to have gone after more galaxies in the Great Bear, but he was too low in the tree tops. Have to wait till next year to re -visit that dipper! I then chased down the faint and elusive globular cluster Palomar -12 in Capricornus.
    [Show full text]
  • PALOMAR 12 AS a PART of the SAGITTARIUS STREAM: the EVIDENCE from ABUNDANCE RATIOS1 Judith G
    The Astronomical Journal, 127:1545–1554, 2004 March A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. PALOMAR 12 AS A PART OF THE SAGITTARIUS STREAM: THE EVIDENCE FROM ABUNDANCE RATIOS1 Judith G. Cohen2 Received 2003 November 7; accepted 2003 December 11 ABSTRACT We present a detailed abundance analysis for 21 elements based on high-dispersion, high spectral resolution Keck spectra for four members of the outer halo ‘‘young’’ Galactic globular cluster Palomar 12. All four stars show identical abundance distributions with no credible indication of any star-to-star scatter. However, the abundance ratios of the Pal 12 stars are very peculiar. There is no detected enhancement of the -elements; the mean of [Si/Fe], [Ca/Fe], and [Ti/Fe] is À0:07 Æ 0:05 dex, O/Fe is also solar, while Na is very deficient. The distribution among the heavy elements shows anomalies as well. These are inconsistent with those of almost all Galactic globular clusters or of field stars in the Galaxy. The peculiarities shown by the Pal 12 stars are, however, in good general agreement with the trends established by Smecker-Hane & McWilliam and by Bonifacio et al. for stars in the Sagittarius dwarf spheroidal (dSph) galaxy evaluated at the [Fe/H] of Pal 12. This reinforces earlier suggestions that Pal 12 originally was a cluster in the Sgr dSph galaxy that during the process of accretion of this galaxy by our own was tidally stripped from the Sgr galaxy to become part of the extended Sgr stream. Key words: globular clusters: general — globular clusters: individual (Palomar 12) — galaxies: individual (Sagittarius dSph) — stars: abundances On-line material: machine-readable table 1.
    [Show full text]
  • Celestial Home of Stars Magda Streicher [email protected]
    deep-sky delights Celestial Home of Stars Magda Streicher [email protected] In an�quity the Capricornus constella- �on was seen as a monster with the head and forelegs of a goat and the posterior of a fish. The creature could almost be compared to the so-called Mermaid but Image source: Stellarium.org could also some�mes, in the case of Cap- ricornus, refer to the Fishman. served towards the east it indicates the The name ‘Tropic of Capricornus’ origi- point of the winter sols�ce, this sols�ce nates from the fact that when first ob- at present being 33o to the west in the figure of Sagi�arius. The constella�on is special to the au- thor for two good reasons. Not only does she live right inside the old Tropic of Capricorn Circle, but the image also reflects a par�cular shape: it looks very much like a huge lopsided triangle, and special in the star composi�on. Heaven alone knows how anyone could see a sea goat with horns in that par�cular star pa�ern, but be that as it may … We will carefully unravel the constella�on, which holds a large number of bright stars to pleasure the eye. The constella�on occupies 414 square degrees of sky and is situated just east of Sagi�arius, but sadly it is not rich in Monument marking the tropic of Capricorn deep-sky objects. S�ll, it is an easily outside Polokwane, Limpopo province. recognisable compila�on, with several mnassa vol 72 nos 5 & 6 126 127 june 2013 capricornus: celestial home of stars look-alike double stars and is, famously, The lovely double star, alpha Capri- a close neighbour to the centre of the corni, also the star closest to the Sagit- Milky Way.
    [Show full text]
  • Implications of Elemental Abundances in Dwarf Spheroidal Galaxies
    A&A 447, 81–87 (2006) Astronomy DOI: 10.1051/0004-6361:20054120 & c ESO 2006 Astrophysics Implications of elemental abundances in dwarf spheroidal galaxies T. Tsujimoto National Astronomical Observatory, Mitaka-shi, Tokyo 181-8588, Japan e-mail: [email protected] Received 30 August 2005 / Accepted 17 September 2005 ABSTRACT Unusual elemental abundance patterns observed for stars belonging to nearby dwarf spheroidal (dSph) galaxies are discussed. Analysis of the [α/H] vs. [Fe/H] diagrams where α represents Mg or an average of α-elements reveals that Fe from type Ia supernovae (SNe Ia) does not contribute to the stellar abundances in the dSph galaxies where the member stars exhibit low α/Fe ratios except for the most massive dSph galaxy, Sagitarrius. The more massive dwarf (irregular) galaxy, the Large Magellanic Cloud, also has an SNe Ia signature in the stellar abundances. These findings suggest that whether SNe Ia contribute to chemical evolution in dwarf galaxies is likely to depend on the mass scale of galaxies. Unusual Mg abundances in some dSph stars are also found to be the origin of the large scatter in the [Mg/Fe] ratios and are responsible for a seemingly decreasing [Mg/Fe] feature with increasing [Fe/H]. In addition, the lack of massive stars in the dSph galaxies does not satisfactorily account for the low-α signature. Considering the assembly of deficient elements (O, Mg, Si, Ca, Ti and Zn), all of which are synthesized in pre-SN massive stars and in SN explosions, the low-α signature appears to reflect the heavy-element yields of massive stars with less rotation compared to solar neighborhood stars.
    [Show full text]
  • 108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
    Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947
    [Show full text]