Kondo Effect in Mesoscopic Quantum Dots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Many-Body Effects in Optical Excitations of Transition Metal Dichalcogenides
Research Collection Doctoral Thesis Many-Body Effects in Optical Excitations of Transition Metal Dichalcogenides Author(s): Sidler, Meinrad Publication Date: 2018-02 Permanent Link: https://doi.org/10.3929/ethz-b-000290909 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 24988 Many-Body Effects in Optical Excitations of Transition Metal Dichalcogenides A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MEINRAD SIDLER MSc ETH Physics, ETH Zurich born on 21.06.1989 citizen of Grosswangen LU accepted on the recommendation of: Prof. Ata¸cImamo˘glu,examiner Prof. Bernhard Urbaszek, co-examiner 2018 c Summary This dissertation treats a quantum impurity problem in a semiconductor system. Quantum impurity problems describe the interaction between a single quantum object and a complex environment. They are ubiquitous in physical systems and represent a fundamental field of research in many-body physics. Prominent examples are the Anderson orthogonality catastrophe and the Kondo effect. In both cases, the impurity is much heavier than the constituents of the interacting environment. If the mass of the impurity is comparable to the surrounding particles, we have a mobile impurity. These systems are usually harder to solve, as evident in the case of lattice polarons, which were first proposed in 1933 by Lev Landau. A complex but accurate description was found years later in 1955 by Richard Feynman. In recent years, strong coupling between single, mobile quantum impurities and a fermionic bath was realized in cold atoms. -
A New View on the Origin of Zero-Bias Anomalies of Co Atoms Atop Noble Metal Surfaces ✉ ✉ Juba Bouaziz 1 , Filipe Souza Mendes Guimarães 1 & Samir Lounis 1
ARTICLE https://doi.org/10.1038/s41467-020-19746-1 OPEN A new view on the origin of zero-bias anomalies of Co atoms atop noble metal surfaces ✉ ✉ Juba Bouaziz 1 , Filipe Souza Mendes Guimarães 1 & Samir Lounis 1 Many-body phenomena are paramount in physics. In condensed matter, their hallmark is considerable on a wide range of material characteristics spanning electronic, magnetic, thermodynamic and transport properties. They potentially imprint non-trivial signatures in 1234567890():,; spectroscopic measurements, such as those assigned to Kondo, excitonic and polaronic features, whose emergence depends on the involved degrees of freedom. Here, we address systematically zero-bias anomalies detected by scanning tunneling spectroscopy on Co atoms deposited on Cu, Ag and Au(111) substrates, which remarkably are almost identical to those obtained from first-principles. These features originate from gaped spin-excitations induced by a finite magnetic anisotropy energy, in contrast to the usual widespread inter- pretation relating them to Kondo resonances. Resting on relativistic time-dependent density functional and many-body perturbation theories, we furthermore unveil a new many-body feature, the spinaron, resulting from the interaction of electrons and spin-excitations loca- lizing electronic states in a well defined energy. ✉ 1 Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich 52425, Germany. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:6112 | https://doi.org/10.1038/s41467-020-19746-1 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19746-1 ignatures of many-body phenomena in solid state physics theoretical transport spectra are nearly identical to the experi- Sare diverse1–5. -
Lateral Quantum Dots for Quantum Information Processing
University of California Los Angeles Lateral Quantum Dots for Quantum Information Processing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Matthew Gregory House 2012 c Copyright by Matthew Gregory House 2012 Abstract of the Dissertation Lateral Quantum Dots for Quantum Information Processing by Matthew Gregory House Doctor of Philosophy in Physics University of California, Los Angeles, 2012 Professor Hong Wen Jiang, Chair The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot. -
Kondo Effect in Real Metals Ph
Kondo effect in real metals Ph. Nozières, Annie Blandin To cite this version: Ph. Nozières, Annie Blandin. Kondo effect in real metals. Journal de Physique, 1980, 41 (3), pp.193- 211. 10.1051/jphys:01980004103019300. jpa-00209235 HAL Id: jpa-00209235 https://hal.archives-ouvertes.fr/jpa-00209235 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Physique 41 (1980) 193-2111 MARS 1980, 193 Classification Physics Abstracts 75.20H Kondo effect in real metals Ph. Nozières Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France and A. Blandin Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France (Reçu le 21 septembre 1979, accepte le 30 octobre 1979) Résumé. 2014 Dans le cadre d’un hamiltonien d’Anderson généralisé, nous étudions le comportement d’une impureté magnétique dans un métal réel, compte tenu de la structure orbitale des électrons localisés sur l’impureté, du champ cristallin et du couplage spin-orbite. Nous nous limitons à un schéma atomique, dans lequel l’impureté a une valeur bien définie entière (une transformation de Schrieffer Wolff est alors possible). Les principales étapes d’une procédure de renormalisation sont décrites en détail. -
Heavy Fermions: Electrons at the Edge of Magnetism
Heavy Fermions: Electrons at the Edge of Magnetism Piers Coleman Rutgers University, Piscataway, NJ, USA Mathur et al., 1998). The ‘quantum critical point’ (QCP) that 1 Introduction: ‘Asymptotic Freedom’ in a Cryostat 95 separates the heavy-electron ground state from the AFM rep- 2 Local Moments and the Kondo Lattice 105 resents a kind of singularity in the material phase diagram 3 Kondo Insulators 123 that profoundly modifies the metallic properties, giving them a a predisposition toward superconductivity and other novel 4 Heavy-fermion Superconductivity 126 states of matter. 5 Quantum Criticality 135 One of the goals of modern condensed matter research 6 Conclusions and Open Questions 142 is to couple magnetic and electronic properties to develop Notes 142 new classes of material behavior, such as high-temperature Acknowledgments 142 superconductivity or colossal magnetoresistance materials, References 143 spintronics, and the newly discovered multiferroic materials. Further Reading 148 Heavy-electron materials lie at the very brink of magnetic instability, in a regime where quantum fluctuations of the magnetic and electronic degrees are strongly coupled. As such, they are an important test bed for the development of 1 INTRODUCTION: ‘ASYMPTOTIC our understanding about the interaction between magnetic FREEDOM’ IN A CRYOSTAT and electronic quantum fluctuations. Heavy-fermion materials contain rare-earth or actinide The term heavy fermion was coined by Steglich et al. (1976) ions, forming a matrix of localized magnetic moments. The in the late 1970s to describe the electronic excitations in active physics of these materials results from the immersion a new class of intermetallic compound with an electronic of these magnetic moments in a quantum sea of mobile con- density of states as much as 1000 times larger than copper. -
Hole Spins in an Inas/Gaas Quantum Dot Molecule Subject to Lateral Electric fields
PHYSICAL REVIEW B 93, 245402 (2016) Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields Xiangyu Ma,1 Garnett W. Bryant,2 and Matthew F. Doty1,3,* 1Dept. of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA 2Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899-8423, USA 3Dept. of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA (Received 12 February 2016; revised manuscript received 3 May 2016; published 3 June 2016) There has been tremendous progress in manipulating electron and hole-spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically stacked InAs/GaAs QDMs using atomistic tight-binding simulations. We systematically investigate QDMs with different geometric structure parameters and local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that lateral electric fields induce hole-spin mixing with a magnitude that increases with increasing lateral electric field over a moderate range. These results suggest that applied lateral electric fields could be used to fine tune and manipulate, in situ, the energy levels and spin properties of single holes confined in QDMs. DOI: 10.1103/PhysRevB.93.245402 I. -
Kondo Effect in Quantum Dots
Kondo Effect in Quantum Dots Seminar: Nanoscopic Systems 29. 7. 2005 Gesa von Bornstaedt Gesa von Bornstaedt Kondo Effect in Quantum Dots Outline 1. What is the Kondo effect? 2. Calculation of the Kondo effect for a single magnetic impurity 3. ”Poor Man’s Scaling” - A renormalization group approach 4. Investigation of the Kondo effect in quantum dots 5. Conclusion Gesa von Bornstaedt Kondo Effect in Quantum Dots 1. What is the Kondo effect? • Resistivity is dominated by phonon scattering for T 0 • In most metals the resistivity decreases monotonically for T → 0 • But: resistance minimum in some metals for T → 0 • Kondo effect: Resonant spin flip scattering at local magnetic impurities • Influences transport properties Figure 1: Minimum in the resistivity of Au (de Haas, de Boer and van den Berg, 1934) Gesa von Bornstaedt Kondo Effect in Quantum Dots 2. Calculation for a single local magnetic impurity Hamiltonian Kondo’s assumption: a local magnetic moment associated with a spin S which is coupled via an exchange interaction with the conduction band electron. † 1 + − − + H = ∑kckσ ckσ + J(ω) S s + S s + Jz(ω)Szsz kσ 2 † 1 + † − † † † = ∑kckσ ckσ + ∑ J(ω) S ck↓ck0↑ + S ck↑ck0↓ + Jz(ω)Sz ck↑ck0↑ − ck↓ck0↓ kσ 2 k,k0 S = local impurity spin s = conduction electron spin Figure 2: Spin flip scattering of a localized impurity moment by a conduction electron Gesa von Bornstaedt Kondo Effect in Quantum Dots Perturbative approach • T > 0 =⇒ expectation values can’t be taken with respect to the ground state • Appropriate: Matsubara Method Starting -
A High-Temperature Silicon Qubit and Its Quantum Interference Tunable
Abstracts from Invited Speakers Keiji Ono (RIKEN) A High-temperature Silicon Qubit and its Quantum Interference Spin qubits are attractive building blocks for quantum computers. Si is a promising host material for spin qubits since it could enable long coherence, high-density integration, and high compatibility with classical computers. Spin qubits have been implemented in Si using gate-defined quantum dots or shallow impurities. However, these qubits must be operated at temperatures <0.1 K, limiting the expansion of qubit technology. We used deep impurities in Si to achieve room-temperature single- electron tunnelling and spin qubit operation at 5–10 K [1]. We employed tunnel field-effect transistors (TFETs) instead of conventional metal–oxide–semiconductor field-effect transistors and achieved strong confinement of the single quantum dots embraced in TFETs up to 0.3 eV. Furthermore, double- quantum-dot devices were operated as spin qubits, and read-out was realized using a spin blockade. These results will enable broadening of the range of spin qubit applications such as sensing, security, and quantum computing. We also study quantum interference effects of a qubit whose energy levels are continuously modulated [2]. The qubit energy levels are modulated via its gate-voltage-dependent g-factors, with either rectangular, sinusoidal, or ramp radio-frequency waves. The energy-modulated qubit is probed by the electron spin resonance. Our results demonstrate the potential of spin qubit interferometry that is implemented in a Si device and is operated at a relatively high temperature. [1] K. Ono, T. Mori, S. Moriyama, High-Temperature Operation of Spin Qubits based on Silicon Tunnel Field-Effect Transistors, arXiv:1804.03364, Scientific reports, in print. -
Arxiv:1102.2798V1 [Cond-Mat.Mes-Hall] 14 Feb 2011 Ipysprse Yculn Ftesi Omolecu- to Spin the of One Be Coupling to by [8]
Interaction of spin and vibrations in transport through single-molecule magnets F. May(1,2), M. R. Wegewijs(3,4), and W. Hofstetter(1) (1) Institut f¨ur Theoretische Physik, Johann Wolfgang Goethe-Universit¨at, 60438 Frankfurt/Main, Germany (2) Max Planck Institute for Polymer Research, 55128 Mainz, Germany (3) Institut f¨ur Theorie der Statistischen Physik, RWTH Aachen, 52056 Aachen, Germany and (4) Peter Gr¨unberg Institut and JARA - Fundamentals of Information Technology, Forschungszentrum J¨ulich, 52425 J¨ulich, Germany We study linear electron transport through a single-molecule magnet (SMM) and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. We show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST) and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands. PACS numbers: 85.65.+h, 73.63.Kv, 85.35.-p Transport measurements on nanometer-sized magnetic lar vibrations as this tends to increase the anisotropy systems address the fundamental problem of how a few barrier [7]. However, the dynamical effect of vibrational magnetic atoms in an anisotropic environment respond to fluctuations and the possible competition between longi- an electron current [1]. Such an environment is provided, tudinal and transverse spin-vibration coupling have not for instance, by ligand groups holding such atoms to- been studied so far, even though coupling to vibrations in gether in a single magnetic molecule contacted in a break the Kondo regime has been considered for spin-isotropic junction [2, 3]. -
Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha
Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha B.A. in Physics and Math, University of Chicago, 2001 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author............................................... ............... Department of Physics December 11, 2007 Certified by........................................... ............... Marc A. Kastner Donner Professor of Physics and Dean of the School of Science Thesis Supervisor Accepted by........................................... .............. Thomas J. Greytak Professor and Associate Department Head for Education 2 Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha Submitted to the Department of Physics on December 11, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We report measurements that use real-time charge sensing to probe a single-electron lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent to the dot and the sensitivity is comparable to other QPC-based systems. We develop an automated feedback system to position the energies of the states in the dot with respect to the Fermi energy of the leads. We also develop a triggering system to identify electron tunneling events in real-time data. Using real-time charge sensing, we measure the rate at which an electron tun- nels onto or off of the dot. In zero magnetic field, we find that these rates depend exponentially on the voltages applied to the dot. We show that this dependence is consistent with a model that assumes elastic tunneling and accounts for the changes in the energies of the states in the dot relative to the heights of the tunnel barriers. -
Exciton Fine-Structure Splitting in Self-Assembled Lateral Inas/Gaas
Exciton Fine-Structure Splitting in Self- Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures Stanislav Filippov, Yuttapoom Puttisong, Yuqing Huang, Irina A Buyanova, Suwaree Suraprapapich, Charles. W. Tu and Weimin Chen Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Stanislav Filippov, Yuttapoom Puttisong, Yuqing Huang, Irina A Buyanova, Suwaree Suraprapapich, Charles. W. Tu and Weimin Chen, Exciton Fine-Structure Splitting in Self- Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures, 2015, ACS Nano, (9), 6, 5741-5749. http://dx.doi.org/10.1021/acsnano.5b01387 Copyright: American Chemical Society http://pubs.acs.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118007 1 Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures Stanislav Fillipov,1,† Yuttapoom Puttisong,1, † Yuqing Huang,1 Irina A. Buyanova,1 Suwaree Suraprapapich,2 Charles W. Tu2 and Weimin M. Chen1,* 1Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping, Sweden 2Department of Electrical and Computer Engineering, University of California, La Jolla, CA 92093, USA ABSTRACT Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized lateral InAs/GaAs quantum-dot molecular structures (QMSs) including laterally-aligned double quantum dots (DQDs), quantum-dot clusters (QCs) and quantum rings (QRs), by employing polarization-resolved micro-photoluminescence (µPL) spectroscopy. -
Interplay Between Charge, Magnetic and Superconducting Order in a Kondo Lattice with an Attractive Hubbard Interaction
Interplay between charge, magnetic and superconducting order in a Kondo lattice with an attractive Hubbard interaction Benedikt Lechtenberg,1 Robert Peters,1 and Norio Kawakami1 1Department of Physics, Kyoto University, Kyoto 606-8502, Japan (Dated: May 8, 2019) We investigate the competition between superconductivity, charge-ordering, magnetic-ordering, and the Kondo effect in a heavy fermion s-wave superconductor described by a Kondo lattice model with an attractive on-site Hubbard interaction. The model is solved using the real-space dynamical mean field theory. For this purpose, we develop a numerical renormalization group (NRG) framework in Nambu space, which is used to solve the superconducting impurity problem. This extended NRG scheme also allows for SU(2) spin symmetry broken solutions, enabling us to examine the competition or cooperation between s-wave superconductivity and incommensurate spin-density waves (SDWs). At half filling, we find an intriguing phase where the magnetic ordering of the f-electrons lifts the degeneracy between the charge density wave (CDW) state and the superconducting state, leading to a strong suppression of superconductivity. In addition, the system may also become a half metal in this parameter regime. Away from half filling, the CDWs vanish and are replaced by superconductivity combined with incommensurate SDWs up to moderate Kondo couplings to the f-electrons. We find that both CDWs as well as superconductivity enhance magnetic ordering due to the suppression of Kondo screening. I. INTRODUCTION the interplay between superconductivity, magnetic order- ing, charge ordering, and the Kondo effect. One of the simplest models comprising all these effects Strongly correlated electron systems attract enormous is a Kondo lattice [37{41] with an additional attractive attention because of the multitude of remarkable phe- Hubbard interaction U < 0 [42]: nomena they exhibit, such as the Kondo effect, mag- netic or charge ordering, and unconventional supercon- X y X H =t c c + H:c: µ ni,σ ductivity.