Kondo Effect in Quantum Dots
Total Page:16
File Type:pdf, Size:1020Kb
Kondo Effect in Quantum Dots Seminar: Nanoscopic Systems 29. 7. 2005 Gesa von Bornstaedt Gesa von Bornstaedt Kondo Effect in Quantum Dots Outline 1. What is the Kondo effect? 2. Calculation of the Kondo effect for a single magnetic impurity 3. ”Poor Man’s Scaling” - A renormalization group approach 4. Investigation of the Kondo effect in quantum dots 5. Conclusion Gesa von Bornstaedt Kondo Effect in Quantum Dots 1. What is the Kondo effect? • Resistivity is dominated by phonon scattering for T 0 • In most metals the resistivity decreases monotonically for T → 0 • But: resistance minimum in some metals for T → 0 • Kondo effect: Resonant spin flip scattering at local magnetic impurities • Influences transport properties Figure 1: Minimum in the resistivity of Au (de Haas, de Boer and van den Berg, 1934) Gesa von Bornstaedt Kondo Effect in Quantum Dots 2. Calculation for a single local magnetic impurity Hamiltonian Kondo’s assumption: a local magnetic moment associated with a spin S which is coupled via an exchange interaction with the conduction band electron. † 1 + − − + H = ∑kckσ ckσ + J(ω) S s + S s + Jz(ω)Szsz kσ 2 † 1 + † − † † † = ∑kckσ ckσ + ∑ J(ω) S ck↓ck0↑ + S ck↑ck0↓ + Jz(ω)Sz ck↑ck0↑ − ck↓ck0↓ kσ 2 k,k0 S = local impurity spin s = conduction electron spin Figure 2: Spin flip scattering of a localized impurity moment by a conduction electron Gesa von Bornstaedt Kondo Effect in Quantum Dots Perturbative approach • T > 0 =⇒ expectation values can’t be taken with respect to the ground state • Appropriate: Matsubara Method Starting point: H = H0 + V(t) with 1 V(t) = J (ω) S+s− + S−s+ + J (ω)S s 2 1 z z z Generalized Wick Theorem for n particle Green’s function: (0) hTτ (UVW...XYZ)i = { fully contracted terms} Problem: • Wick’s theorem only valid for operators, whose commutator is a c-number • Not the case for the impurity spin, obeying the standard commutation relations of angular momentum Gesa von Bornstaedt Kondo Effect in Quantum Dots Pseudo fermion method ± Representation of S , Sz through canonical field operators ~ †~ In formulas: S = ∑σσ0 fσ Sσσ0 fσ0 for example: 1 1 † † 1 Sz| ↑i = 2 | ↑i corresponds to 2 f↑ f↑ − f↓ f↓ | ↑i = 2 | ↑i Problem: artificially enlarged Fock space =⇒ project out the unphysical part with the following constraint † Q = ∑ fσ fσ = 1 σ All physical relevant quantities depend on the partition function : h −β(H+λ(Q−1))i Zc = lim tr Q e λ→ ∞ Gesa von Bornstaedt Kondo Effect in Quantum Dots Evaluation of Wick’s theorem Two particle interaction using the pseudo fermions: 1 † † V(t) = ∑ v(kl; nm) fk fl cmcn k, l, m, n ∈ {↑, ↓} klmn 2 Two particle correlation function looks like: D † † † † † † E ∝ Tτ Vb f f cm cn Vb f f cm cn f f cmcn k1 l1 1 1 k2 l2 2 2 k l Remember: • any contraction between a pseudo and a fermion operator = 0 † • contraction( fk fl ) ∝ δkl =⇒ just two fully contracted terms survive, corresponding to two diagrams Gesa von Bornstaedt Kondo Effect in Quantum Dots Diagrams The scattering matrix is defined as the sum of diagram (I) and (II) • Solid lines: bare electron operators • Dashed lines: impurity pseudo fermion operators Gesa von Bornstaedt Kondo Effect in Quantum Dots Evaluation of the diagrams Vertex part of the diagrams: 1 1 (I) = − ∑ J hτ|S+|σ ihσ|s−|σ i + hτ|S−|σ ihσ|s+|σ i + 2J hτ|Sz|σ ihσ|sz|σ i β 4 1 2 1 2 1 z 2 1 σ,τ,ωn,k + − − + z z · J1 hσ4|S |τihσ3|s |σi + hσ4|S |τihσ3|s |σi + 2Jzhσ4|S |τihσ3|s |σi ·Gkσ (iωn)gτ (iω − iωn) 1 1 (II) = − ∑ J hτ|S+|σ ihσ |s−|σi + hτ|S−|σ ihσ |s+|σi + 2J hτ|Sz|σ ihσ |sz|σi β 4 1 2 3 2 3 z 2 3 σ,τ,ωn,k + − − + z z · J1 hσ4|S |τihσ|s |σ1i + hσ4|S |τihσ|s |σ1i + 2Jzhσ4|S |τihσ|s |σ1i ·Gkσ (iωn)gτ (−iω + iωn) where the free Matsubara Green’s functions for electrons and pseudo fermions are : 1 1 G ν(iωn) = gτ (iνn) = k iωn−k iνn−λ Gesa von Bornstaedt Kondo Effect in Quantum Dots Simplifications • Sum over Matsubara Frequencies Fermionic Matsubara Frequencies correspond to singularities of Fermi distribution =⇒ The sum can be replaced by a contour integral: 1 1 1 I dz 1 1 f (−λ) − f ( ) (I) ∝ − ∑ · = f (z) · = k β ω − ω − ω − λ π − ω − − λ ω − − λ ωn i n k i i n 2 i z k i z i k 1 ∑ H dz Figure 3: β n F(iωn) = − 2πi F(z) f (z) Gesa von Bornstaedt Kondo Effect in Quantum Dots Further simplifications • Pseudo fermion energy is gauged to get rid of the λ in the denominator Constraint Q allows a U(1) gauge symmetry for this energy f 0 = eiα f ⇒ f 0† f 0 = f † f iω → ω + λ iω → ω − λ • Project out unphysical part by λ → , using limλ→ f (−λ) = 1 ∞ ∞ 1 − f ( ) (I) −→ ∑ k ω − k k f ( ) (II) −→ ∑ k ω − k k • Evaluation of the spin sum using – Completeness relations – Spin algebra Gesa von Bornstaedt Kondo Effect in Quantum Dots Second order term of the scattering matrix 1 1 − 2 f ( ) 3 1 t(2) = J2hσ |~S|σ ihσ |~s|σ i ∑ k + J2hσ |σ ihσ |σ i ∑ 4 2 3 1 ω − 4 2 3 1 ω − 2 k k 16 k k • Evaluation of the k-sum (assuming a constant density N(0) for the conduction electrons): 1 − 2 f ( ) Z D tanh(/2T) − ∑ k = N(0) d ω − − ω k k −D D =∼ 2N(0) ln max(|ω| , T) For electrons near the Fermi surface (ω = 0) and small temperatures T the result is: D t(2) = N(0)J2hσ |~S|σ ihσ |~s|σ iln 4 2 3 1 T Gesa von Bornstaedt Kondo Effect in Quantum Dots Scattering matrix and resistivity • The resistivity is connected to the scattering matrix via: ρ(T) ∝ |t|2 Scattering matrix: D t = J ~S~s 1 + N(0) J ln T D =⇒ ρ(T) ∝ 1 + 2N(0) J ln T • Problem: This term for the resistivity is divergent for T → 0 • Perturbation theory breaks down, when the 2nd order term becomes ' 1st order term • This limit defines the so called Kondo temperature: − 1 2N(0)J Tk = De Gesa von Bornstaedt Kondo Effect in Quantum Dots 3. ”Poor Man’s Scaling” - A renormalization group approach • Anderson’s idea: Use scaling to continue the perturbative approach to small temperatures (T < TK) • Idea: reduce the bandwidth D of the conduction band • Constraint: The underlying physical quantity, the scattering matrix t, stays invariant • =⇒ Coupling constants (J1, Jz) change with bandwidth D t = V + VPdDG0t + V(1 − PdD)G0t 0 0 0 ⇒ t = V + V (1 − PdD)G0t with V = V + PdDG0V = V + dV Gesa von Bornstaedt Kondo Effect in Quantum Dots Renormalization Evaluating the integral for the reduced bandwidth: Z tanh(/2T) Z D tanh(/2T) Z D−dD tanh(/2T) d = d − d = 2d(lnD) int − ω −D − ω −(D−dD) − ω Change of the potential term 1 dV = −2N(0) J J S+s− + S−s+ + J2 Szsz d(lnD) 2 z 1 1 Renormalization Group Equations: dJ dJ z = −2N(0)J2 1 = −2N(0)J J d lnD 1 d lnD z 1 In the physical state (J1 = Jz) this leads to one analytically soluble differential equation: 1 J(D) = 1 + 2N(0)ln( D ) J0 D0 → Divergent for T = TK Gesa von Bornstaedt Kondo Effect in Quantum Dots Physical consequences • Low temperature regime corresponds to diverging coupling constant • Since J → the impurity and conduction electron spin have to allign antiparallel to minimize the total energy • For T → 0∞ local impurity spin forms a singlet with a conduction electron • Local impurity spin is screened by the conduction electrons • Behaves like a non-magnetic one • Saturation of the resistivity becomes explicable Figure 4: Sketch of the coupling constant and the resistance minimum versus temperature Gesa von Bornstaedt Kondo Effect in Quantum Dots 4. Investigation of the Kondo effect in quantum dots Quantum Dot • Small solid-state device • Single electron transistor (SET) • Contains confined ’droplet’ of electrons • Integer number of electrons N • Artificial atom Figure 5: Scanning electron microscope image of a SET (Picture taken from: D. Goldhaber-Gordon, H. Shtrikman et al.: ”Kondo effect in a single-electron transistor”, Nature vol 391, 156 (1998).) Gesa von Bornstaedt Kondo Effect in Quantum Dots Transport in detail • Tunable tunnel coupling to the leads • Has a single spin-degenerate energy state 0 • Occupied by one electron with spin up or down • First order tunneling is blocked by the coulomb blockade • Virtual tunnel events with an effective spin-flip are possible • Successive spin-flip processes screen the local spin on the dot Figure 6: Possible virtual tunnel event Gesa von Bornstaedt Kondo Effect in Quantum Dots Why is a quantum dot a Kondo system? • For an odd number of electrons the dot has a net spin magnetic moment For an even number of electrons it is no Kondo system • Individual artificial magnetic impurity • Spin singlet state is formed between the unpaired localized electron and delocalized electrons in the leads • Quantum dot has a narrow-resonance in the density-of-states (DOS) • This Kondo resonance gives rise to enhanced conductance through the dot Figure 7: Kondo resonance (Lower energy bump: broadened single-particle state 0) Gesa von Bornstaedt Kondo Effect in Quantum Dots Minimum in the conductance • Minimum in δG strongly resembles the resistance minimum for magnetic impurities • 3, 5, 7 show Kondo behavior (odd number of electrons) • 2, 4, 6 are no Kondo systems (even number of electrons) Figure 8: Conductance versus temperature (Data taken from: Sara M.