Exciton Fine-Structure Splitting in Self-Assembled Lateral Inas/Gaas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kondo Effect in Mesoscopic Quantum Dots
1 Kondo Effect in Mesoscopic Quantum Dots M. Grobis,1 I. G. Rau,2 R. M. Potok,1,3 and D. Goldhaber-Gordon1 1 Department of Physics, Stanford University, Stanford, CA 94305 2 Department of Applied Physics, Stanford University, Stanford, CA 94305 3 Department of Physics, Harvard University, Cambridge, MA 02138 Abstract A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduction electrons. Nearly a decade ago, the Kondo effect was observed in a new system, in which the magnetic moment stems from a single unpaired spin in a lithographically defined quantum dot, or artificial atom. The discovery of the Kondo effect in artificial atoms spurred a revival in the study of Kondo physics, due in part to the unprecedented control of relevant parameters in these systems. In this review we discuss the physics, origins, and phenomenology of the Kondo effect in the context of recent quantum dot experiments. After a brief historical introduction (Sec. 1), we first discuss the spin-½ Kondo effect (Sec. 2) and how it is modified by various parameters, external couplings, and non-ideal conduction reservoirs (Sec. 3). Next, we discuss measurements of more exotic Kondo systems (Sec. 4) and conclude with some possible future directions (Sec. 5). Keywords Kondo effect, quantum dot, single-electron transistor, mesoscopic physics, Anderson model, Coulomb blockade, tunneling transport, magnetism, experimental physics 2 1 Introduction At low temperatures, a small concentration of magnetic impurities — atoms or ions with a non-zero magnetic moment — can dramatically affect the behavior of conduction electrons in an otherwise pure metal. -
Lateral Quantum Dots for Quantum Information Processing
University of California Los Angeles Lateral Quantum Dots for Quantum Information Processing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Matthew Gregory House 2012 c Copyright by Matthew Gregory House 2012 Abstract of the Dissertation Lateral Quantum Dots for Quantum Information Processing by Matthew Gregory House Doctor of Philosophy in Physics University of California, Los Angeles, 2012 Professor Hong Wen Jiang, Chair The possibility of building a computer that takes advantage of the most subtle nature of quantum physics has been driving a lot of research in atomic and solid state physics for some time. It is still not clear what physical system or systems can be used for this purpose. One possibility that has been attracting significant attention from researchers is to use the spin state of an electron confined in a semiconductor quantum dot. The electron spin is magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss of quantum coherence. It can also be manipulated electrically, by taking advantage of the exchange interaction. In this work we describe several experiments we have done to study the electron spin properties of lateral quantum dots. We have developed lateral quantum dot devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics of electrons confined in these quantum dots. We measured the electron spin excited state lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could measure. We fabricated and characterized a silicon double quantum dot. -
Fundamental Nature of the Fine-Structure Constant Michael Sherbon
Fundamental Nature of the Fine-Structure Constant Michael Sherbon To cite this version: Michael Sherbon. Fundamental Nature of the Fine-Structure Constant. International Journal of Physical Research , Science Publishing Corporation 2014, 2 (1), pp.1-9. 10.14419/ijpr.v2i1.1817. hal-01304522 HAL Id: hal-01304522 https://hal.archives-ouvertes.fr/hal-01304522 Submitted on 19 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Fundamental Nature of the Fine-Structure Constant Michael A. Sherbon Case Western Reserve University Alumnus E-mail: michael:sherbon@case:edu January 17, 2014 Abstract Arnold Sommerfeld introduced the fine-structure constant that determines the strength of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several clues to calculating the fine-structure constant with his research on Johannes Kepler’s view of nature and Pythagorean geometry. The Laplace limit of Kepler’s equation in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian Schwinger’s research enable a calculation of the electron magnetic moment anomaly. Considerations of fundamental lengths such as the charge radius of the proton and mass ratios suggest some further foundational interpretations of quantum electrodynamics. -
Dirac's Fine-Structure Formula for an “Abnormally High”
Dirac’s fine-structure formula for an “abnormally high” nuclear charge The solution of an old riddle A. LOINGER Dipartimento di Fisica dell’Università di Milano Via Celoria, 16 − 20133 Milano, Italy Summary. − In Dirac’s fine-structure formula for the hydrogenlike atoms a critical role is played by the square root of the following expression: the unity minus the square of the product of the atomic number by the fine-structure constant (which is approximately equal to 1/137). Indeed, for a fictitious, ideal nucleus for which the above product is greater than or equal to one, the mentioned square root becomes imaginary, or zero. I prove in this Note that the origin of such theoretical “breaking down” is quite simple and is inherent in the special theory of relativity of classical physics. PACS 11.10 − Relativistic wave equations; 03.65 – Semiclassical theories and applications. 1. − The problem As is well known, Dirac’s fine-structure formula for the energy of an electron in the Coulomb field generated by a fixed nuclear charge Ze is as follows: −1 2 2 2 E Z α (1.1) = 1+ , 2 2 m0c 2 2 2 1 2 []nr + (κ − Z α ) 2 where: E = W + m0c is the relativistic total energy; m0 is the rest-mass of the 2 electron; α := e (hc) is the fine-structure constant; nr = 0,1,2,3,... is the radial quantum number; κ = ±1,±2,±3,... is the auxiliary quantum number (according to a Weylian terminology); when nr = 0 , the quantum κ takes only the positive values [1]. -
The Fine Structure Constant
GENERAL ⎜ ARTICLE The Fine Structure Constant Biman Nath The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an Biman Nath is an important parameter in the field of atomic struc- astrophysicist at the ture. Raman Research Institute, Bengaluru. The values of the constants of Nature, such as Newton’s gravitational constant ‘G’, determine the nature of our Universe. Among these constants, there are a few which are pure numbers and have no units. For example, there is the ‘fine structure constant’, denoted by α, which has a value roughly 1/137. The value of α is related to the electromagnetic force between subatomic charged parti- cles, and essentially determines how an atom holds to- gether its electrons. It is however not obvious why this constant has this par- ticular value. Why 1/137 and not some other value? One might think the question is meaningless, but it is not. If the value of this constant had been slightly smaller or larger, even by as little as 4%, then stars would not have been able to sustain the nuclear reac- tions in their core that produce carbon. As a result, there would not have been any carbon-based lifeforms in our Universe. Therefore, the question why α ≈ 1/137 is not completely irrelevant. Scientists have even wondered if its value remains a con- stant over time. -
Hole Spins in an Inas/Gaas Quantum Dot Molecule Subject to Lateral Electric fields
PHYSICAL REVIEW B 93, 245402 (2016) Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields Xiangyu Ma,1 Garnett W. Bryant,2 and Matthew F. Doty1,3,* 1Dept. of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA 2Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899-8423, USA 3Dept. of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA (Received 12 February 2016; revised manuscript received 3 May 2016; published 3 June 2016) There has been tremendous progress in manipulating electron and hole-spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically stacked InAs/GaAs QDMs using atomistic tight-binding simulations. We systematically investigate QDMs with different geometric structure parameters and local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that lateral electric fields induce hole-spin mixing with a magnitude that increases with increasing lateral electric field over a moderate range. These results suggest that applied lateral electric fields could be used to fine tune and manipulate, in situ, the energy levels and spin properties of single holes confined in QDMs. DOI: 10.1103/PhysRevB.93.245402 I. -
2.5. the Fine Structure of a Hydrogen Atom
Phys460.nb 33 0 0 0= ψ a A H'-H'A ψb = (2.281) 0 0 0 0 0 0 0 0 0 0 ψa A H' ψb - ψ a H'A ψb =A a ψa H' ψb -A b ψa H' ψb =(A a -A b) ψa H' ψb 0 0 If Aa ≠A b, this equation means that ψa H' ψb = 0. 0 0 For this situation, although we have a degeneracy, one can just do non-degenerate perturbation for ψa and ψb (separately) and there will be no singularities at all. 2.5. the fine structure of a hydrogen atom 2.5.1. Relativistic correction In QMI, we solved an ideal model for a hydrogen atom (i.e. a particle in 1/r potential). In a real hydrogen atom, that model missed some of the physics, and one of them is relativistic effects. Q: what is the energy of a particle, if the particle is moving at speed v and the rest mass m. m E=Mc 2 = c2 2 (2.282) 1- v c2 Q: what is the momentum of a particle, if the particle is moving at speed v and the rest mass m. m p =Mv= v 2 (2.283) 1- v c2 As a result, E= p2 c2 +m 2 c4 (2.284) To prove this relation, we start from the r.h.s., p2 c2 +m 2 c4 = v2 2 2 2 2 2 m2 c41- 2 2 2 2 4 2 2 2 2 4 m v m v c c2 m v c +m c -m c v m c m (2.285) c2 +m 2 c4 = + = = = c2 =E v2 v2 v2 v2 v2 1- 2 1- 2 1- 2 1- 2 1- 2 2 c c c c c 1- v c2 This relation between E and p is an very important relation for relativistic physics! Q: what is kinetic energy? A: First, find the energy of a particle when it is not moving p = 0. -
Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha
Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha B.A. in Physics and Math, University of Chicago, 2001 Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author............................................... ............... Department of Physics December 11, 2007 Certified by........................................... ............... Marc A. Kastner Donner Professor of Physics and Dean of the School of Science Thesis Supervisor Accepted by........................................... .............. Thomas J. Greytak Professor and Associate Department Head for Education 2 Electron Tunneling and Spin Relaxation in a Lateral Quantum Dot by Sami Amasha Submitted to the Department of Physics on December 11, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We report measurements that use real-time charge sensing to probe a single-electron lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent to the dot and the sensitivity is comparable to other QPC-based systems. We develop an automated feedback system to position the energies of the states in the dot with respect to the Fermi energy of the leads. We also develop a triggering system to identify electron tunneling events in real-time data. Using real-time charge sensing, we measure the rate at which an electron tun- nels onto or off of the dot. In zero magnetic field, we find that these rates depend exponentially on the voltages applied to the dot. We show that this dependence is consistent with a model that assumes elastic tunneling and accounts for the changes in the energies of the states in the dot relative to the heights of the tunnel barriers. -
Fine and Hyperfine Structure of the Hydrogen Atom
UNIT 4 Fine and hyperfine structure of the hydrogen atom Notes by N. Sirica and R. Van Wesep Previously, we solved the time-independent Sch¨odingerequation for the Hydro- gen atom, described by the Hamiltonian p2 e2 H = − (1) 2m r Where e is the electron’s charge in your favorite units. However, this is not really the Hamiltonian for the Hydrogen atom. It is non-relativistic and it does not contain spin. In order to completely describe the Hydrogen we would need to use the Dirac equation. We will not introduce that equation here, but we will say a few words about the most important energy level of the relativistic Hydrogen atom, namely the rest mass energy. E = mc2 ≈ 0.5MeV (2) We can compare this to the ground state (ionization) energy we found for the Hamiltonian in 1. 2 E = −Eion ≈ 13.6eV ¿ mc (3) Even though the rest mass energy is so much larger, it appears constant in the non-relativistic regime. Since differences in energy are important, we could ignore it before. The rest mass energy may be large, but it does not enter the world of everyday experience. Regardless, it is fruitful to investigate the relative size of the ionization energy to the rest mass energy. E me4 1 e4 α2 ion = = = (4) mc2 2~2 mc2 2c2~2 2 86 UNIT 4: Fine and hyperfine structure of the hydrogen atom e2 1 Where α = ~c = 137 is a fundamental constant of nature. No one understands it, but it is important that it is small. -
Fine Structure
Fine Structure The e®ects known as ¯ne structure come from relativistic corrections to the non-relativistic treatment of hydrogen. Fine structure e®ects are present in all atoms. They are easy to calculate for the case of a one electron atom. Recall from Bohr theory that in hydrogen, the electron's velocity satis¯es v=c » ®: As will be seen below, the correction terms in ¯ne structure are O(v=c)2: LS Coupling The ¯ne structure known as LS coupling is spin-dependent. It arises from the interaction of the electron's magnetic moment with a magnetic ¯eld seen in the electron's rest frame. The electron's magnetic moment is proportional to its spin, eh¹ ~¹ = ¡ gS;~ 2mc where 1 S~ = ~σ; 2 and the so-called g factor is very close to 2. g = 2 + O(®) + ::: The e®ect can be understood if we go to the electron rest frame. In that frame the electron will experience a magnetic ¯eld. The interaction of the magnetic moment with this magnetic ¯eld is the origin of the LS term in ¯ne structure. To derive the e®ect, we need the formulae for ¯elds in the electron rest frame (prime frame) in terms of ¯eld in the lab frame (unprime). Since we are interested only the the ¯rst relativistic correction, we only need the ¯eld transformation formulae to lowest order in v=c: These are 1 E~ 0 = E~ + ~v £ B~ c 1 B~ 0 = B~ ¡ ~v £ E~ c Now in the lab frame, the only ¯eld present is the Coulomb ¯eld of the nucleus, so the magnetic ¯eld we are after is 1 B~ 0 = ¡ m~v £ E;~ mc where ~r E = e : r3 Rewriting B~ 0; we have e ~r £ ~p eh¹ L~ B~ 0 = = : mc r3 mc r3 This ¯rst term in this formula can be regarded as purely classical. -
Fine-Structure Effects in Relativistic Calculations of the Static Polarizability of the Helium Atom A
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 2 FEBRUARY 1999 Fine-structure effects in relativistic calculations of the static polarizability of the helium atom A. Derevianko and W. R. Johnson Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA V. D. Ovsyannikov Voronezh State University, 394693 Voronezh, Russia V. G. Pal’chikov*) National Research Institute of Physicotechnical and Radio-Engineering Measurements (State-Owned), 141570 Mendeleevo, Moscow Region, Russia D. R. Plante Department of Mathematics & Computer Science, Stetson University, De Land, Florida 32720, USA G. von Oppen Institute fu¨r Atomare und Analytische Physik, Technische Universita¨t, D-10623 Berlin, Germany ~Submitted 20 July 1998! Zh. E´ ksp. Teor. Fiz. 115, 494–504 ~February 1999! We use the relativistic configuration-interaction method and the model potential method to calculate the scalar and tensor components of the dipole polarizabilities for the excited states 3 3 1s3p P0 and 1s3p P2 of the helium atom. The calculations of the reduced matrix elements for the resonant terms in the spectral expansion of the polarizabilities are derived using two-electron basis functions of the relativistic Hamiltonian of the atom, a Hamiltonian that incorporates the Coulomb and Breit electron–electron interactions. We formulate a new approach to determining the parameters of the Fuss model potential. Finally, we show that the polarizability values are sensitive to the choice of the wave functions used in the calculations. © 1999 American Institute of Physics. @S1063-7761~99!00902-6# 1. INTRODUCTION higher-order perturbation effects, which are needed for a meaningful interpretation of the results of measurements. -
Fine Structure of Excitons And
Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr 3 single nanocrystals Julien Ramade, Léon Marcel Andriambariarijaona, Violette Steinmetz, Nicolas Goubet, Laurent Legrand, Thierry Barisien, Frédérick Bernardot, Christophe Testelin, Emmanuel Lhuillier, Alberto Bramati, et al. To cite this version: Julien Ramade, Léon Marcel Andriambariarijaona, Violette Steinmetz, Nicolas Goubet, Laurent Legrand, et al.. Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr 3 single nanocrystals. Nanoscale, Royal Society of Chemistry, 2018, 10 (14), pp.6393 - 6401. 10.1039/C7NR09334A. hal-01772283 HAL Id: hal-01772283 https://hal.archives-ouvertes.fr/hal-01772283 Submitted on 12 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fine Structure of Excitons and electron-hole exchange energy in Polymorphic CsPbBr3 Single Nanocrystals Julien Ramadea, Léon Marcel Andriambariarijaonaa, Violette Steinmetza, Nicolas Goubeta, Laurent Legranda, Thierry Barisiena*, Frédérick Bernardota, Christophe Testelina, Emmanuel Lhuilliera, Alberto Bramatib, Maria Chamarroa. All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which currently arouses enthusiasm and stimulates a huge activity due to outstanding properties across several fields of optoelectronics. A deep knowledge of the band-edge excitonic properties in those materials is thus crucial to further optimize their performances.