Reptiles, Amphibiens De Mayotte
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blumgart Et Al 2017- Herpetological Survey Nosy Komba
Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs). -
High-Resolution X-Ray CT Scanning Reveals the First Resin-Embedded Miniature Gecko of the Ge
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 2018 Band/Volume: 67 Autor(en)/Author(s): Daza Juan D., Hunziker Jordan P., Bauer Aaron M., Wagner Philipp, Böhme Wolfgang Artikel/Article: Things are not always as they seem: High-resolution X-ray CT scanning reveals the first resin-embedded miniature gecko of the genus Ebenavia 71-77 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Bonn zoological Bulletin 67 (2): 71–77 ISSN 2190–7307 2018 · Daza J.D. et al. http://www.zoologicalbulletin.de https://doi.org/10.20363/BZB-2018.67.2.071 Scientific note urn:lsid:zoobank.org:pub:AA5B7777-C36B-4E9C-B77E-272FBCBA3D7A Things are not always as they seem: High-resolution X-ray CT scanning reveals the first resin-embedded miniature gecko of the genus Ebenavia Juan D. Daza*, 1, Jordan P. Hunziker1, Aaron M. Bauer2, Philipp Wagner2, 3, Wolfgang Böhme4 1 Department of Biological Sciences, Sam Houston State University, 2000 Avenue I, Life Sciences Building, Room 105, Huntsville, TX 77341, USA 2 Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA 3 Allwetterzoo Münster, Sentruper Str. 315, D-48161 Münster, Germany 4 Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D-53113 Bonn, Germany * Corresponding author: E-mail: [email protected] 1 urn:lsid:zoobank.org:author:7F796C4B-B0D5-4669-8D6F-96CA494B62F5 2 urn:lsid:zoobank.org:author:A54A16B8-BEE1-4996-9170-6CADB539B5D1 3 urn:lsid:zoobank.org:author:0575CE45-AB5C-4493-A8AD-DD399E18284A 4 urn:lsid:zoobank.org:author:FFAC2972-9F52-404B-BA9C-489C7793FF8D * urn:lsid:zoobank.org:author:78BB0EB0-8A48-4A1D-8D53-287AD1EF5FFA Abstract. -
Quantifying the Conservation Value of Plantation Forests for a Madagascan Herpetofauna
Herpetological Conservation and Biology 14(1):269–287. Submitted: 6 March 2018; Accepted: 28 March 2019; Published: 30 April 2019. QUANTIFYING THE CONSERVATION VALUE OF PLANTATION FORESTS FOR A MADAGASCAN HERPETOFAUNA BETH EVANS Madagascar Research and Conservation Institute, Nosy Komba, Madagascar current address: 121 Heathway, Erith, Kent DA8 3LZ, UK, email: [email protected] Abstract.—Plantations are becoming a dominant component of the forest landscape of Madagascar, yet there is very little information available regarding the implications of different forms of plantation agriculture for Madagascan reptiles and amphibians. I determined the conservation value of bamboo, secondary, open-canopy plantation, and closed-canopy plantation forests for reptiles and amphibians on the island of Nosy Komba, in the Sambirano region of north-west Madagascar. Assistants and I conducted 220 Visual Encounter Surveys between 29 January 2016 and 5 July 2017 and recorded 3,113 reptiles (32 species) and 751 amphibians (nine species). Closed-canopy plantation supported levels of alpha diversity and community compositions reflective of natural forest, including several threatened and forest-specialist species. Open-canopy plantation exhibited diminished herpetofaunal diversity and a distinct community composition dominated by disturbance-resistant generalist species. Woody tree density and bamboo density were positively correlated with herpetofaunal species richness, and plantation species richness, plantation species density, sapling density, and the proportion of wood ground cover were negatively associated with herpetofaunal diversity. I recommend the integration of closed-canopy plantations on Nosy Komba, and across wider Madagascar, to help mitigate the negative effects of secondary forest conversion for agriculture on Madagascan herpetofauna; however, it will be necessary to retain areas of natural forest to act as sources of biodiversity for agroforestry plantations. -
Project Document
Appendix 1: Project Document PROJECT DOCUMENT SECTION 1: PROJECT IDENTIFICATION 1.1 Project title: Sustainable Management of Conservation Areas and Improved Livelihoods to Combat Wildlife Trafficking in Madagascar 1.2 Project number: GEF ID: 10233 PMS: 1.3 Project type: FSP 1.4 Trust Fund: GEF 1.5 Strategic objectives: GEF strategic long-term objective: BD-1: Mainstream biodiversity across sectors as well as landscapes and seascapes; BD-2: Address direct drivers to protect habitats and species Strategic programme for GEF VII: BD-1-2a; BD-1-2b; BD-2-7 1.6 UNEP priority: Healthy Ecosystems and Environmental Governance 1.7 Geographical scope: National 1.8 Mode of execution: External 1.9 Project executing organization: Ministry of Environment and Sustainable Development (MEDD) 1.10 Duration of project: 60 months Commencing: 10/01/2021 Technical completion: 31/12/2026 Validity of legal instrument: 60 months 1.11 Cost of project US$ % Cost to the GEF Trust Fund 5,763,303.00 28.24% Co-financing Cash 0 0% Sub-total 0 0% In-kind Ministry of Environment & 1,000,000.00 4.90% Sustainable Development FAPBM 7,499,744 36.75% 1 Appendix 1: Project Document UNDP CO Madagascar 5,000,000.00 24.50% CITES Secretariat 120,000.00 0.59% TRAFFIC 920,000.00 4.51% Grace Farms Foundation 103,200.00 0.51% Sub-total 14,642,944.00 71.76% Total 20,406,247.00 100% 1.12 Project summary The Project aims to fight illegal wildlife trade (IWT) in Madagascar at national, regional and local levels and specifically conserve endemic biodiversity in the spiny dry ecosystem of the south-east of the country, in the Anosy and Androy Regions, Toleary Province. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Computational Molecular Species Delimitation and Taxonomic Revision of the Gecko Genus Ebenavia Boettger, 1878
The Science of Nature (2018) 105:49 https://doi.org/10.1007/s00114-018-1574-9 ORIGINAL PAPER Computational molecular species delimitation and taxonomic revision of the gecko genus Ebenavia Boettger, 1878 Oliver Hawlitschek1 & Mark D. Scherz1,2 & Bernhard Ruthensteiner1 & Angelica Crottini3 & Frank Glaw1 Received: 22 February 2018 /Revised: 13 June 2018 /Accepted: 3 July 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Cryptic species have been detected in many groups of organisms and must be assumed to make up a significant portion of global biodiversity. We study geckos of the Ebenavia inunguis complex from Madagascar and surrounding islands and use species delimitation algorithms (GMYC, BOLD, BPP), COI barcode divergence, diagnostic codon indels in the nuclear marker PRLR, diagnostic categorical morphological characters, and significant differences in continuous morphological characters for its taxonomic revision. BPP yielded ≥ 10 operational taxonomic units, whereas GMYC (≥ 27) and BOLD (26) suggested substantial oversplitting. In consequnce, we resurrect Ebenavia boettgeri Boulenger 1885 and describe Ebenavia tuelinae sp. nov., Ebenavia safari sp. nov., and Ebenavia robusta sp. nov., increasing the number of recognised species in Ebenavia from two to six. Further lineages of Ebenavia retrieved by BPP may warrant species or subspecies status, but further taxonomic conclusions are postponed until more data become available. Finally, we present an identification key to the genus Ebenavia, provide an updated distribution map, and discuss the diagnostic values of computational species delimitation as well as morphological and molecular diagnostic characters. Keywords BOLD . Operational Taxonomic Unit . Madagascar clawless gecko . Integrative taxonomy . Taxonomic inflation . Species complex Introduction taxa (Bickford et al. -
Squamata: Gekkonidae: Gekko Gecko)
Received: 29 August 2019 Revised: 26 November 2019 Accepted: 11 December 2019 DOI: 10.1002/jmor.21092 RESEARCH ARTICLE The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko) Rebecca J. Laver1 | Cristian H. Morales2,3 | Matthew P. Heinicke4 | Tony Gamble5,6,7 | Kristin Longoria2 | Aaron M. Bauer8 | Juan D. Daza2 1Research School of Biology, Australian National University, Canberra, Australia Abstract 2Department of Biological Sciences, Sam Armored skin resulting from the presence of bony dermal structures, osteoderms, is Houston State University, Huntsville, Texas an exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known 3Department of Biology, University of Texas at Arlington, Arlington, Texas to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko 4Department of Natural Sciences, University gecko LINNAEUS 1758) is among the best-studied geckos due to its large size and of Michigan-Dearborn, Dearborn, Michigan wide range of occurrence, and although cranial dermal bone development has previ- 5Department of Biological Sciences, ously been investigated, details of osteoderm development along a size gradient Marquette University, Milwaukee, Wisconsin 6Milwaukee Public Museum, Milwaukee, remain less well-known. Likewise, a comparative survey of additional species within Wisconsin the broader Gekko clade to determine the uniqueness of this trait has not yet been 7 Bell Museum of Natural History, University of completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 speci- Minnesota, Saint Paul, Minnesota 8Department of Biology, Villanova University, mens of G. gecko, using X-rays and high-resolution computed tomography for visual- Villanova, Pennsylvania izing and quantifying the dermal armor in situ. -
Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae. -
COMMISSION REGULATION (EC) No 834/2004
L 127/40EN Official Journal of the European Union 29.4.2004 COMMISSION REGULATION (EC) No 834/2004 of 28 April 2004 amending Council Regulation (EC) No 338/97 on the protection of species of wild fauna and flora by regulating trade therein THE COMMISSION OF THE EUROPEAN COMMUNITIES, definition of ‘specimens’ given by Article 2(t) of Regu- lation (EC) No 338/97; the annotation regarding Aloe Having regard to the Treaty establishing the European spp. needs to make an explicit reference to the species Community, listed in Annex A; and the annotation to Guaiacum spp. Having regard to Council Regulation (EC) No 338/97 of 9 needs to be changed in order to designate the parts and December 1996 on the protection of species of wild fauna and derivatives decided upon at the 12th Conference. flora by regulating trade therein (1), and in particular Article 19(3) thereof, (5) The Scientific Review Group has established, on the basis of the criteria set out in Article 3(4)(a) of Regu- Whereas: lation (EC) No 338/97, that certain species must be with- drawn from the list of animals whose importation into (1) Council Regulation (EC) No 338/97 lists animal and the Community should, on account of the volume plant species in respect of which trade is restricted or involved, be monitored, whilst certain other species controlled. Those lists incorporate the lists set out in the must be added to that list. annexes to the Convention on International Trade in Endangered Species of Wild Fauna and Flora, hereinafter (6) Regulation (EC) No 338/97 should therefore be ‘the CITES Convention’. -
1 7 an Identification Key to the Geckos of the Seychelles
HERPETOLOGICAL JOURNAL. Vol. I. pp. 17-19 (19X5l 17 AN IDENTIFICATION KEY TO THE GECKOS OF THE SEYCHELLES, WITH BRIEF NOTES ON THEIR DISTRIBUTIONS AND HABITS ANDREW S. GARDNER Department of Zoology, University of Aberdren. Ti/lydrone Avenue, Aberdeen AB9 2TN. U. K. Present addresses: The Calton Laboratory. Department of Genetics and Biomet IT, Universif.I' Co/legr London. Wo/f�·on !-louse, 4 Stephenson Wa r London NWI 21-11'.. U.K. (A ccepted 24. /0. 84) INTRODUCTION 4. Scales on chest and at least anterior of belly keeled. Underside white. Phe!suma astriata The Republic of Seychelles, lying in the western Tornier. 5. Indian Ocean consists of a group of mountainous, granitic islands, and a large number of outlying coral Scales on chest and belly not keeled. 6. atolls and sand cays, distributed over 400,000 km2 of sea. There are over a hundred islands, ranging in size 5. Subcaudal scales keeled and not transversely from Mahe, at 148 km2 to islands little more than enlarged in original tails. Ground colour of emergent rocks. A total of eighteen species of lizard, rump and tail usually bright blue, and of from three families are recorded from the Seychelles nanks, green. Tail unmarked or spotted with (Gardner, 1984). The best represented family is the red. Red transverse neck bars often reduced or Gekkonidae with eleven species, fo ur of which are absent. Phe/suma astriata astriata Tornier i endemic to the islands. The identification key 90 1. presented here should enable interested naturalists to Subcaudal scales unkeeled and transversely identify any gecko encountered in the Seychelles to the enlarged in original tails. -
Reptiles & Amphibians of Kirindy
REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch. -
2008 Board of Governors Report
American Society of Ichthyologists and Herpetologists Board of Governors Meeting Le Centre Sheraton Montréal Hotel Montréal, Quebec, Canada 23 July 2008 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 31 May 2008 The ASIH Board of Governor's is scheduled to meet on Wednesday, 23 July 2008 from 1700- 1900 h in Salon A&B in the Le Centre Sheraton, Montréal Hotel. President Mushinsky plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. We will cover the proposed consititutional changes following discussion of reports. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Montreal. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Montréal on 20 July 2008 so try to contact me before that date if possible. I will arrive late on the afternoon of 22 July 2008. The Annual Business Meeting will be held on Sunday 27 July 2005 from 1800-2000 h in Salon A&C. Please plan to attend the BOG meeting and Annual Business Meeting. I look forward to seeing you in Montréal. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2008 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W.