Overcoming Drought
Total Page:16
File Type:pdf, Size:1020Kb
Overcoming Drought A scenario for the future development of the agricultural and water sector in arid and hyper arid areas, based on recent technologies and scientific results New Generation Greenhouse Technology Use of unconventional Water Sources Urban Water- and Matter Circuit Cross Technology Synergisms Exemplary Regions of Agadir (Morocco) and Gabes (Tunisia) Policy and Research Recommendations Martin Buchholz (Editor) Implementation Guide ofthe “Cycler Support” project, a specific support action accomplished under the 6th Framework Programme of the European Union, aimed at the implementation of research activities related to wastewater use and - recycling within new generation greenhouse system (RTD FP 6 – INCO, Ref. Nr. 031697) 2 Cover Illustration by TU-Berlin, Lena Köppen, Stephanie Bock 0 Overcoming Drought A scenario for the future development of the agricultural and water sector in arid and hyper arid areas, based on recent technologies and scientific results New Generation Greenhouse Technology Use of unconventional Water Sources Urban Water- and Matter Circuit Cross Technology Synergisms Exemplary Regions of Agadir (Morocco) and Gabes (Tunisia) Policy and Research Recommendations Martin Buchholz (Editor) Implementation Guide of the “Cycler Support” project, a specific support action accomplished under the 6th Framework Programme of the European Union, aimed at the implementation of research activities related to wastewater use and - recycling within new generation greenhouse system (RTD FP 6 – INCO, Ref. Nr. 031697) 1 Project Partners and Authorship CYCLER-SUPPORT was a Specific Support Action financed by the European Union, aimed at the implementation of research activities related to wastewater use and - recycling within new generation greenhouse systems, adapted to the requirements of the Mediterranean Partner Countries. Project duration 11/2006 – 10.2008 - Technische Universität Berlin, Sct. Building Technology and Design, Prof. Claus Steffan Martin Buchholz (Chapters 1.1. – 1.2., 1.4.2., 2.1.3., 2.5.2., 2.4.1., 2.5.2., 3.1. – 5.2., A.1.2.2., A 1.3.2., A 2.1.-A 2.2.) Marco Schmidt (Chapters 2.2.2 - 2.2.5) - Institut Agronomique et Vétérinaire Hassan II : Complexe Horticole d'Agadir, Agadir, Morocco (IAV) Redouane Choukrallah (Chapter 2.1.1., 2.2.1., 2.2.2., 2.5.1., A 1.1., A 1.2. - Technology Transfer Centre Bremerhaven, Germany (TTZ) Steffen Foellner (Chapter A 2.1.) Mirko Haenel (Chapter 2.4.2. – 2.4.8.) - Ecole Nationale d’Ingénieurs de Tunis, Tunisie (ENIT) Karim Bourouni (Chapter 1.3.1., A.1.3.1., A 1.3.2.) - Mediterranean Agronomic Institute of Bari, Italy (IAMB) Atef Hamdi (Chapter 2.1.1., 2.3.1. – 2.3.4.) - International Center for Agricultural Research in Dry Areas, Tunis, Tunisie (ICARDA). Mohammed El Mourid (Chapter 1.4., 1.4.1., 1.4.3., 2.1., A 1.3.1.) Habib Ketata (Chapter 1.4., 1.4.1., 1.4.3., 2.1., A 1.3.1.) Ali Nefzaoui (Chapter 1.4., 1.4.1., 1.4.3., 2.1., A 1.3.1.) Mohamed Boutfirass (Chapter 1.4., 1.4.1., 1.4.3., 2.1., A 1.3.1.) 2 Content Comprehensive Summary ....................................................................................................... 8 Situation .................................................................................................................................. 21 Five steps of implementation................................................................................................. 23 1. First step: New generation greenhouses as a solution for intensive agricultural production in arid and hyper arid areas.............................................................................. 25 1.1. Closed greenhouses, The Watergy approach............................................................ 27 1.1.1. Functioning of the Watergy system ....................................................................... 27 1.1.2. Integration of Solid State Fermentation as a co-production process in the closed greenhouse........................................................................................................................ 29 Fig. 1.8. Classification of Solid State Fermenatation applications (Buchholz 2002) 1.1.3. Specific benefits of closed greenhouses and potential for climate change mitigation and adaptation strategies: ........................................................................................................ 31 1.1.3. Specific benefits of closed greenhouses and potential for climate change mitigation and adaptation strategies: ................................................................................................. 31 1.1.4. Further needed steps for implementation:.............................................................. 33 1.2. Seawater-fed open greenhouses ................................................................................. 43 1.2.1. The seawater greenhouse........................................................................................ 43 1.2.2. Concept for slope greenhouses............................................................................... 45 1.2.3. Specific benefits of seawater fed open greenhouses and potential for climate change mitigation and adaptation strategies: ................................................................... 47 1.3. Standard greenhouses with attached solar still ........................................................ 48 1.3.1. Specific benefits of greenhouses integrated solar stills:......................................... 48 1.4. Polarised development with high productive greenhouses on one side and adapted open field agriculture, based on rainwater harvesting, soil improvement and short term use of treated wastewater on the other side............................................................ 50 1.4.2. Improved rainwater harvesting using non-degradable organic matter from the urban matter circuit .......................................................................................................... 55 1.4.3. Short term use of treated wastewater for irrigation with treated wastewater (TWW) with Emphasis on Fodder Crops ...................................................................................... 55 2. Second step: Urban water and matter circuit ................................................................. 59 2.1. Marginal-quality water resources.............................................................................. 59 2.1.1. Wastewater from domestic, municipal, and industrial activities............................ 59 3 2.1.2. Role of plant nutrients in the wastewater ............................................................... 65 2.1.3. Greenhouse horticulture as a filter element in the urban water cycle .................... 66 2.2. Post treatment of water from existing treatment plants for use in irrigation ....... 67 2.2.1. Sand filtration percolation Plant............................................................................. 67 2.2.2. Aerated pond .......................................................................................................... 70 2.2.3. Constructed gravel bed........................................................................................... 70 2.2.4. Membrane ultra-filtration....................................................................................... 74 2.2.5. Problem of micro-pollutants (all filters)................................................................. 75 2.3. Sustainable Use of Saline Water for Irrigation in Arid and Semi Arid Regions .. 76 2.3.1. Assessing the suitability of saline water for irrigation.......................................... 76 2.3.2. – The potential of using saline water in irrigation ................................................. 77 2.3.3. Management practies under saline irrigation water ............................................... 78 2.3.4. Irrigation practices.................................................................................................. 80 2.4. Wastewater separation ............................................................................................... 86 2.4.1. System Description ................................................................................................ 89 2.4.2. Wet blackwater system.......................................................................................... 91 2.4.3. Wet urine diversion system .................................................................................... 93 2.4.4. Wet urine & greywater diversion system............................................................... 94 2.4.6. Dry urine & greywater diversion system ............................................................... 97 2.4.7 Dry all mixed system............................................................................................... 99 2.4.8. Flowstreams and technology assessment ............................................................. 100 2.5. Greenhouse irrigation systems allowing the use of treated wastewater............... 102 2.5.1. Use of wastewater in irrigation ............................................................................ 103 2.5.2. Integration of a heat storage into the irrigation- and soil-system......................... 111 3. Third step: Accumulation of carbon in the urban perimeter ..................................... 112 3.1. Treatment of solid waste as a pollutant sink in the urban matter circuit............ 112 3.1.1. Pyrolysis ..............................................................................................................