GUIDELINES for NATIONAL WASTE MANAGEMENT STRATEGIES: MOVING from CHALLENGES to OPPORTUNITIES Guidelines for National Waste Management Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extended Producer Responsibility and the Role of Social Economy Re-Use Operators: Implementing a Socially Inclusive Waste Hierarchy
27 August 2020 Extended Producer Responsibility and the role of social economy re-use operators: Implementing a socially inclusive waste hierarchy Introduction Extended Producer Responsibility (EPR) is a tool placing responsibility on producers, importers and retailers to financially and/or physically manage the post-consumer phase of certain goods. EPR aims to prevent the unnecessary production of waste, manufacture better designed goods and participate in the achievement of waste collection, prevention, preparing for re-use and recycling targets. Various EPR models have developed organically across European countries, including France which covers the largest amount of waste streams (including textiles, furniture, and leisure equipment among others). In this context, distortion of the internal market may occur. This is why EU wide minimum requirements for EPR have been included within the updated Waste Framework Directive (WFD) published in 20181. In addition to waste streams such as WEEE where EPR is mandatory at EU level and high re-use potential exists, the new Circular Economy Action Plan (CEAP) also indicates that EPR for textiles should be considered at EU level2. However, according to the experience of RREUSE members, practical implementation of EPR often conflicts with the waste hierarchy3, prioritising recycling over re-use. Unfortunately, this usually limits the role that re-use operators, notably those from the social economy, play in implementing EPR. To counter this trend, this paper provides a number of practical suggestions as to how EPR, for example, if applied to household goods such as furniture, textiles and electronics, can better support re-use and waste prevention notably through targets, access to re-useable goods and encouraging better product design. -
Toward Zero Waste 2012
zero waste framework toward zero waste 2012 Table of Contents Executive Summary 5 Context: A Zero Waste Framework 6 Zero Waste – Pragmatic & Visionary 13 Global Principles for Zero Waste Communities 16 Zero Waste Business Principles 17 Cochrane’s Zero Waste Goal 19 Background Cochrane Waste Collection, Disposal and Diversion Programs 20 Town of Cochrane Waste Diversion Programs 32 Achieving Zero Waste 45 44 zerozero waste waste frameworkframework Executive Summary The Town of Cochrane provides weekly automated waste and recycling collection services through a contracted collection system to approximately 6000 households. The amount of waste collected and disposed has increased in conjunction with population growth, with approximately 2600 Metric Tonnes disposed of in 2011. Cochrane residents disposed of 138 kg per capita in 2011, compared to the Alberta residential waste disposal average of 289 kg per capita.1 This relatively low waste generation is largely due to the Town of Cochrane’s waste limit, curbside recycling program and convenient Cochrane Eco Centre programs. The waste limit encourages residents to take advantage of opportunities to reduce their waste as well as take advantage of waste diversion opportunities, such as recycling and composting. When the “Two Unit Limit” was instituted in 2005, there was a significant drop in waste generation, as Cochrane has continued to implement proactive waste management practices our waste generation rate has dropped from 224 kg per capita to today’s 138 kg per capita. Waste reduction programs in Cochrane are not directly targeted at the Industrial, Commercial, and Institutional (ICI) sector. The ICI sector does have access to the Cochrane Eco Centre and contributes to funding its operation through a monthly fee on utility bills. -
Rethinking the Waste Hierachy
R ethinking the Waste H i erarchy Environmental ASSESSMENT INSTITUTE MARCH 2005 INSTITUT FOR MILJ0VURDERING E nvironmental Assessment Institute Reference no.: 2002-2204-007 ISBN.: 87-7992-032-2 Editors: Clemen Rasmussen and Dorte Vigs0 Written by: Clemen Rasmussen (project manager), Dorte Vigs0, Frank Ackerman, Richard Porter, David Pearce, Elbert Dijkgraaf and Herman Vollebergh. Published: March 2005 Version: 1.1 ©2005, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute Linnesgade 18 DK -1361 Copenhagen Phone: +45 7226 5800 Fax: +45 7226 5839 E-mail: [email protected] Web: www.imv.dk E nvironmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations A number of specific recommendations for achieving cost-effective waste policies can be made based on both the US experience presented by Ackerman and Porter and on the analysis of European waste management presented by Pearce and Dijkgraaf & Vollebergh. The results of this project relate to both the target setting and the regulatory implementation of waste policy in the EU. The main recommendations for future waste policies in the EU and Member States are: ■ The waste hierarchy must be considered a very general and flexible guideline for formulating waste policies. What is environmentally desirable is not always a preferred solution, when considered from a socio economic perspective. The reason is that some environmental benefits may come at a comparably so cially high cost. The marginal costs and benefits will vary depending on mate rial and locality. It is recommended that social costs and benefits of new recy cling schemes should be analysed and that a critical assessment be made on to determine if further steps are in fact socially desirable. -
Waste Management
Environment Committee Waste management The Environment Committee is investigating aspects of London’s waste generation, handling and disposal, to inform the development of work under the Mayor’s Environment Strategy and other policies. The three aspects for particular focus are: • Waste reduction and the circular economy • Recycling • Energy from waste The investigation will seek to build on past work of the committee and identify recommendations to the Mayor and perhaps other London actors. Background London generates a huge amount of waste (about 20 million tonnes in 20101), of many types from earth and cement to plastics, paper and organic material. The main destinations for London’s bulk waste are recycling, incineration as fuel to generate electricity and/or heat buildings, and landfill. Of course the amount of waste to manage can be reduced by using less material in the first place, or by passing goods on to another user, rather than discarding them with the rubbish. The waste hierarchy The ‘waste hierarchy’ places these alternatives in a preferred order based on their environmental and quality of life impacts. 1 Of which, nearly half was construction, demolition and excavation waste (CDE), nearly a third commercial and industrial waste, with municipal (mainly household) waste only 20%. Most CDE waste is re-used or recycled in some form; municipal waste has the lowest recycling rate and the highest landfill. Data from the (previous) Mayor’s Business Waste Strategy https://www.london.gov.uk/what-we-do/environment/environment-publications/mayors-business-waste-management- strategy (see p25) and Municipal Waste Strategy https://www.london.gov.uk/sites/default/files/municipal_waste_final.pdf (see p26) Page 1 of 11 Environment Committee Waste management Since 2000, landfill (at the bottom of the hierarchy) has reduced considerably, but in recent years waste reduction and recycling (high to medium in the hierarchy) have stagnated and further waste diverted from landfill has instead shifted to incineration (low in the hierarchy). -
Waste Minimisation
Waste Minimisation An Environmental Good Practice Guide For Industry This guide will help industry and the Environment Agency move forward together to minimise waste and achieve national environmental goals WASTE MINIMISATION An Environmental Good Practice Guide for Industry “The cost of your waste is not so much the cost of getting rid of it as the value of what you are getting rid of!” Published by the Environment Agency April 2001, to help business achieve sustainable practice through waste minimisation. Revised edition April 2001. First published April 1998. i Waste Minimisation Good Practice Guide Environment Agency April 2001 FOREWORD Minimise waste – maximise profit The way we use our planet’s natural resources is now widely recognised as one of the root causes of many environmental problems. Waste and industrial emissions have a major impact on the environment both nationally and globally. Effects such as global warming, ozone depletion, acid rain, air and water pollution are all derived from local emissions, but the resources consumed may be mined and manufactured from anywhere in the world. From extraction to consumption the global economy consumes vast quantities of raw materials, water and energy. In the UK some 600 million tonnes of raw materials, excluding water, are used each year. More than 90 per cent of the resources we consume are either thrown away as wastes or discharged to the environment as effluent or air emissions. Since the Environment Agency first published this guide in 1998, waste minimisation has become an established business practice for many organisations and thousands of businesses have now implemented waste reduction programmes. -
Oracle® Secure Global Desktop Platform Support and Release Notes for Release 4.7
Oracle® Secure Global Desktop Platform Support and Release Notes for Release 4.7 E26357-02 November 2012 Oracle® Secure Global Desktop: Platform Support and Release Notes for Release 4.7 Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. -
Shameek Vats UPCYCLING of HOSPITAL TEXTILES INTO FASHIONABLE GARMENTS Master of Science Thesis
Shameek Vats UPCYCLING OF HOSPITAL TEXTILES INTO FASHIONABLE GARMENTS Master of Science Thesis Examiner: Professor Pertti Nousiainen and university lecturer Marja Rissanen Examiner and topic approved by the Council, Faculty of Engineering Sci- ences on 6 May 2015 i ABSTRACT TAMPERE UNIVERSITY OF TECHNOLOGY Master‘s Degree Programme in Materials Engineering VATS, SHAMEEK: Upcycling of hospital textiles into fashionable garments Master of Science Thesis, 64 pages, 3 Appendix pages July 2015 Major: Polymers and Biomaterials Examiner: Professor Pertti Nousianen and University lecturer Marja Rissanen Keywords: Upcycling, Textiles, Cotton polyester fibres, Viscose fibres, Polymer Fibers, Degradation, Life Cycle Assessment(LCA), Recycling, Cellulose fibres, Waste Hierarchy, Waste Management, Downcycling The commercial textile circulation in Finland works that a company is responsi- ble for supplying and maintenance of the textiles. The major customers include hospitals and restaurants chains. When the textiles are degraded and unsuitable for use, a part of it is acquired by companies, like, TAUKO Designs for further use. The rest part is unfortunately sent to the landfills. We tried to answer some research questions, whether the waste fabrics show the properties good enough to be used to manufacture new garments. If the prop- erties of the waste textiles are not conducive enough to be made into new fab- rics,whether or not other alternatives could be explored. A different view of the thesis also tries to reduce the amount of textile waste in the landfills by explor- ing different methods. This was done by characterizing the waste for different properties. The amount of cellulose polyester fibres was calculated along with breaking force and mass per unit area. -
Water Treatment Plant Deconstruction and Demolition Bid Proposal
Bid # 06-14 CONTRACT DOCUMENTS AND SPECIFICATIONS for Water Treatment Plant Deconstruction and Demolition Bid Proposal John P. Bohenko, City Manager City of Portsmouth, New Hampshire Prepared by: City of Portsmouth Department of Public Works 680 Peverly Hill Road Portsmouth, NH 1 Bid # 06-14 TABLE OF CONTENTS INVITATION TO BID 3 INSTRUCTION TO BIDDERS 4 AWARD AND EXECUTION OF CONTRACT 7 PROPOSAL FORM 9 BID SECURITY BOND 12 BIDDER'S QUALIFICATIONS 14 CONTRACT AGREEMENT 16 NOTICE OF INTENT TO AWARD 19 NOTICE TO PROCEED 20 CHANGE ORDER 21 LABOR AND MATERIALS PAYMENT BOND 22 MAINTENANCE BOND 25 CONTRACTOR'S AFFIDAVIT 26 CONTRACTOR'S RELEASE 27 INSURANCE REQUIREMENTS 28 GENERAL REQUIREMENTS 29 CONTROL OF WORK 31 TEMPORARY FACILITIES 33 MEASUREMENT AND PAYMENT 34 BID ALTERNATES 38 SPECIFICATIONS: 011000 SUMMARY 42 013000 ADMINISTRATIVE REQUIREMENTS 43 015050 PROJECT WASTE MANAGEMENT 44 017000 EXECUTION & CLOSEOUT REQUIREMENTS 48 020500 DECONSTRUCTION 50 024119 SELECTIVE STRUCTURE DEMOLITION 54 2 Bid # 06-14 Water Treatment Plant Deconstruction and Demolition Bid Proposal #06-14 INVITATION TO BID Sealed bid proposals, plainly marked, Water Treatment Plant Deconstruction and Demolition Project, Bid Proposal #06-14 on the outside of the mailing envelope as well as the sealed bid envelope, addressed to the Finance/Purchasing Department, City Hall, 1 Junkins Avenue, Portsmouth, New Hampshire, 03801, will be accepted until 1:30 p.m. September 25, 2013 at which time all bids will be publicly opened and read aloud. A mandatory pre-bid meeting will be held at 2:30 p.m., September 10th, 2013 beginning at the City DPW, 680 Peverly Hill Road, Portsmouth, NH, and proceeding to the two demolition sites. -
Environmental Protection Agency Batneec Guidance
ENVIRONMENTAL PROTECTION AGENCY BATNEEC GUIDANCE NOTE Class 3.3 FERROUS METAL FOUNDRIES (DRAFT 3) Processing of Iron & Steel in Forges - BATNEEC Page 1. Introduction 3 2. Interpretation of BATNEEC 4 3. Sectors covered 6 4. Control Technologies 7 5. Emission Limit Values 11 6. Compliance Monitoring 14 7. References 15 8. Appendix 1 - Sources & Emissions 16 BAT33v3.DOC 14/05/96 Page 2 of 21 Processing of Iron & Steel in Forges - BATNEEC 1. INTRODUCTION This Guidance Note is one of a series issued by the Environmental Protection Agency and is designed to provide guidance to those applying for integrated pollution control licences under the EPA Act. It should also be read in conjunction with Application Guidance Notes, available under separate cover. It should be noted at the outset, that noise is not included within the scope of this work and guidance on this parameter has been issued separately. This Guidance Note is comprised of seven main sections and an appendix. Following this introduction, Section 2 contains a general note on the interpretation of BATNEEC. The industrial activity covered by the terms of this note is given in Section 3. In Section 4, the technologies to control emissions are tabulated and in Section 5 the specific emission limit values (ELVs) are given. Section 6 contains comments on compliance monitoring requirements, while the principal references are given in Section 7. The Appendix gives the main sources of emissions, and the principal releases from such sources. All applicants for Integrated Pollution Control licences, in the sector covered by this note, should carefully examine the information laid down in this Guidance Note, and should use this information to assist in the making of a satisfactory application for an Integrated Pollution Control licence to the Agency. -
Meeting of the MED POL National Coordinators
UNEP(DEC)/MED WG.231/6 5 May 2003 ENGLISH MEDITERRANEAN ACTION PLAN Meeting of the MED POL National Coordinators Sangemini, Italy, 27 - 30 May 2003 STRATEGIC ACTION PROGRAMME GUIDELINES SEWAGE TREATMENT AND DISPOSAL IN THE MEDITERRANEAN REGION In cooperation with WHO UNEP Athens, 2003 Table of Contents Page No. 1. INTRODUCTION 1 Purpose of Document 1 Target Audience 2 2. ENVIRONMENTAL CONSIDERATIONS 3 Background water quality 3 Wastewater characteristics 3 Characteristics of wastewater discharges 5 Aesthetics 5 Pathogens 5 Nutrients 6 Toxicants 6 Dissolved solids 7 Suspended solids 7 Other considerations 7 Environmental uses and water quality 8 Use area definition 8 Environmental Quality Objective and Environmental Quality Standards 9 Legislation and role of authorities 12 Approaches 12 Role of authorities 13 Monitoring 14 3. MANAGEMENT FRAMEWORK 16 Aims and Objectives 16 Strategy and Principles 16 Control Mechanisms 17 Regulations 17 Enforcement 18 Economic tools 18 Effluent Quality 19 Effluent management and environmental values/water uses 19 Technology-based guidelines 21 Determination of effluent quality 21 Receiving Water Body and Aquatic Ecosystem Protection 22 Stakeholders 23 The Role of the Wastewater Company/Authority 23 Page No. Community Consultation 24 4. OPTIONS FOR EFFLUENT MANAGEMENT 26 Waste Minimisation 27 Managing the Collection Systems 28 Managing the Treatment Systems 30 Effluent Reuse 30 Land Application 32 Discharge to Coastal Waters 35 Discharge to Inland Waters 37 Treatment of wastewater 38 Treatment processes 38 Sludge processing and disposal/reuse 39 Selection of flow scheme 41 Submarine Outfall 42 Mixing zone 44 Treatment and disposal design philosophy 45 Environmental quality objectives 45 Use areas 46 Design of wastewater sanitation schemes/sewerage schemes 46 5. -
Glossary of Terms
The Study on Master Plan for Hazardous Waste Management in Romania Final Report Japan International Cooperation Agency Volume 7 Pilot Project 2 Waste Minimisation and Treatment in Metal Surface Treatment Process GLOSSARY OF TERMS Terms Meaning Acquis Communautaire or Acquis The ‘Body of Law’ of the European Union covering all legislation prepared and adopted by EU institutions. ADR European Agreement for international transport of hazardous substances (Accord Européen Relatif au Transport International des Marchandises Dangerouses par Route) BAT Best Available Techniques BG Bulgaria CAP Common Agricultural Policy CAS Country Assistance Strategy CBC Cross-border Co-operation CEE Central and Eastern European countries CPC Clean Production Centre DDBRA Danube Delta Biodiversity Reserve Authority or DfID Department for International Development DISAE Development of Implementation Strategies for Approximation in Environment EBRD European Bank for Reconstruction and Development EDC Ethylene Dichloride EEC European Economic Communities EIA Environmental impact assessment EIB European Investment Bank EIS Environmental impact statement EIU Economist Intelligence Unit EMAS Eco-management and Audit Scheme EPI Environmental Protection Inspectorate EPR Environmental Performance Report Ref: 28. EQS Environment Quality Standard ERM Environmental Resources Management EWC European Waste Catalogue EU The European Union GD Government Decision GEF Global Environment Fund GEO Government Emergency Ordinance GMP Genetically modified products GO Government Ordinance -
SUEZ Signs New Agreement for Industrial Wastewater Treatment Services to Expand Environmental Business to Fujian Province
China, 13 May, 2021 SUEZ Signs New Agreement for Industrial Wastewater Treatment Services to Expand Environmental Business to Fujian Province SUEZ through its joint venture1 recently signed an agreement with Shaowu, Fujian Province to acquire 51% equity in Shaowu Wujiatang Wastewater Treatment Company Limited. Under this agreement, the joint venture will be responsible for the operation, management and technological re-engineering of the wastewater treatment plant in Jintang Industrial Park of Shaowu, to provide high quality industrial wastewater treatment services for Jintang Industrial Park and adjacent townships. This move will also facilitate protection of the local river ecosystem. Shaowu, a city in Nanping, lies in the north of Fujian province. The Futun river, one of three major river systems on the upper reaches of the Minjiang river, runs across Jintang Industrial Park in Shaowu. Thanks to abundant fluorite resources, Jintang Industrial Park was built to develop the local fluorine chemical industry. While the development supports restructuring of the manufacturing sector and product upgrades, it has more demanding requirements for the industrial park’s wastewater treatment services. The Wastewater Treatment Plant (WWTP) Phase Ⅰ of Shaowu Wujiatang Wastewater Treatment Company Limited, which is in Jintang Industrial Park, provides wastewater treatment services exclusively for the park. The WWTP has a long-term treatment capacity target of 60,000 m3/day and a near-term target of 20,000 m3/day. The near-term target is expected to be achieved through expansion, by 2025. The WWTP’s current Phase I treatment capacity is 10,000 m3/day. Chemical wastewater often features complex composition, high salinity, toxic substances, low biodegradability, and fluctuating effluent quality.