Wind Loading of Structures, Third Edition

Total Page:16

File Type:pdf, Size:1020Kb

Wind Loading of Structures, Third Edition Holmes Structural Engineering “A fine text for a wind engineering course… A must for any wind engineer’s library. –Leighton Cochran, consulting engineer “The first book I recommend to the many customers I have who—as practicing structural engineers Wind not wind engineers—are in need of a comprehensive yet understandable reference text.” –Daryl Boggs, CPP, Inc Wind Loading of Structures “I highly recommend this book by Dr John Holmes for use in graduate and senior undergraduate studies, structural engineering design against wind actions, and other professional design Loading of practices.” –Kenny Kwok, University of Western Sydney Wind forces from various types of extreme wind events continue to generate ever-increasing damage to buildings and other structures. The third edition of this well-established book fills an Structures important gap as an information source for practising and academic engineers alike, explaining the principles of wind loads on structures, including the relevant aspects of meteorology, bluff- body aerodynamics, probability and statistics, and structural dynamics. Among the unique features of the book are its broad view of the major international codes and Third Edition standards, and information on the extreme wind climates of a large number of countries of the world. It is directed towards practising (particularly structural) engineers, and academics and graduate students. The main changes from the earlier editions are: • Discussion of potential global warming effects on extreme events • More discussion of tornados and tornado-generated damage • A rational approach to gust durations for structural design • Expanded considerations of wind-induced fatigue damage • Consideration of Aeolian vibrations of suspended transmission lines • Expansion of the sections on the cross-wind response of tall slender structures • Simplified approaches to wind loads on “porous” industrial, mining, and oil/gas structures • A more general discussion of formats in wind codes and standards John Holmes draws on 40 years of international experience in research, teaching, and consulting Edition Third on the wind loading of structures; has acted as an expert witness in several legal actions; and has been a radio and television commentator after severe wind events. John D. Holmes K22609 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4822-2919-6 711 Third Avenue 90000 an informa business New York, NY 10017 2 Park Square, Milton Park www.crcpress.com Abingdon, Oxon OX14 4RN, UK 9 781482 229196 www.sponpress.com A SPON PRESS BOOK K22609 mech-rev.indd 1 12/18/14 8:52 AM Wind Loading of Structures Third Edition Wind Loading of Structures Third Edition John D. Holmes JDH Consulting, Australia A SPON PRESS BOOK CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20141205 International Standard Book Number-13: 978-1-4822-2922-6 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface to the first edition xv Preface to the second edition xvii Preface to the third edition xix Author xxi 1 The nature of wind storms and wind-induced damage 1 1.1 Introduction 1 1.2 Meteorological aspects 1 1.2.1 Pressure gradient 2 1.2.2 Coriolis force 2 1.2.3 Geostrophic wind 4 1.2.4 Gradient wind 4 1.2.5 Frictional effects 5 1.3 Types of wind storms 6 1.3.1 Gales from large depressions 6 1.3.2 Tropical cyclones 7 1.3.3 Thunderstorms 10 1.3.4 Tornadoes 11 1.3.5 Downbursts 12 1.3.6 Downslope winds 13 1.4 Wind damage 13 1.4.1 Recent history of wind loss and damage 15 1.5 Wind-generated debris 17 1.5.1 Threshold of flight 17 1.5.2 Trajectories of compact objects 19 1.5.3 Trajectories of sheet and rod objects 20 1.5.4 Standardised missile-testing criteria 21 1.6 Wind storm damage and loss prediction 22 1.6.1 Hazard models 22 1.6.2 Vulnerability curves 23 1.6.3 Damage produced by flying debris 25 1.7 Hurricane-damage modelling 27 1.8 Predicted effects of climate change 28 1.9 Summary 28 v vi Contents 1.10 The following chapters and appendices 29 References 29 2 Prediction of design wind speeds and structural safety 33 2.1 Introduction and historical background 33 2.2 Principles of extreme value analysis 34 2.2.1 The GEV Distribution 34 2.2.2 Return period 35 2.2.3 Separation by storm type 35 2.2.4 Simulation methods for tropical cyclone wind speeds 36 2.2.5 Compositing data from several stations 36 2.2.6 Correction for gust duration 36 2.2.7 Wind direction effects and wind direction multipliers 37 2.3 Extreme wind estimation by the Type I Distribution 39 2.3.1 Gumbel’s method 39 2.3.2 Gringorten’s method 40 2.3.3 Method of Moments 40 2.3.4 Example of fitting the Type I Distribution to annual maxima 41 2.3.5 General penultimate distribution 41 2.4 The peaks-over-threshold approach 45 2.4.1 Example of the use of the ‘peaks over threshold’ method 46 2.4.2 Extreme winds by direction sector 48 2.5 Parent wind distributions 48 2.6 Wind loads and structural safety 49 2.6.1 Limit states design 50 2.6.2 Probability of failure and the safety index 50 2.6.3 Nominal return period for design wind speeds 52 2.6.4 Uncertainties in wind load specifications 53 2.7 Wind load factors 54 2.8 Summary 55 References 55 3 Strong wind characteristics and turbulence 57 3.1 Introduction 57 3.2 Mean wind speed profiles 58 3.2.1 The ‘Logarithmic Law’ 58 3.2.2 The ‘Power Law’ 60 3.2.3 Mean wind profiles over the ocean 60 3.2.4 Relationship between upper level and surface winds 62 3.2.5 Mean wind profiles in tropical cyclones 62 3.2.6 Wind profiles in thunderstorm winds 63 3.2.7 Wind profiles in tornadoes 63 3.3 Turbulence 64 3.3.1 Turbulence intensities 65 3.3.2 Probability density 66 Contents vii 3.3.3 Gust wind speeds and gust factors 67 3.3.4 Wind spectra 69 3.3.5 Correlation 70 3.3.6 Co-spectrum and coherence 71 3.3.7 Turbulence in a downdraft 72 3.4 Modification of wind flow by topography 73 3.4.1 General effects of topography 74 3.4.2 Topographic multipliers 75 3.4.3 Shallow hills 75 3.4.4 Steep hills, cliffs and escarpments 76 3.4.5 Effect of topography on tropical cyclones and thunderstorm winds 77 3.5 Change of terrain 78 3.6 Weakening of a tropical cyclone after a coast crossing 79 3.7 Other sources 80 3.8 Summary 80 References 81 4 Basic bluff-body aerodynamics 83 4.1 Flow around bluff bodies 83 4.2 Pressure and force coefficients 83 4.2.1 Bernoulli’s equation 83 4.2.2 Force coefficients 85 4.2.3 Dependence of pressure and force coefficients 85 4.2.4 Reynolds Number 86 4.3 Flat plates and walls 87 4.3.1 Flat plates and walls normal to the flow 87 4.3.2 Flat plates and walls inclined to the flow 90 4.4 Rectangular prismatic shapes 92 4.4.1 Drag on two-dimensional rectangular prismatic shapes 92 4.4.2 Effect of aspect ratio 92 4.4.3 Effect of turbulence 93 4.4.4 Drag and pressures on a cube and finite-height prisms 95 4.4.5 Jensen number 97 4.5 Circular cylinders 97 4.5.1 Effects of Reynolds Number and surface roughness 97 4.5.2 Effect of aspect ratio 101 4.6 Fluctuating forces and pressures 102 4.6.1 Introduction 102 4.6.2 The Quasi-steady assumption 102 4.6.3 Body-induced pressure fluctuations and vortex-shedding forces 103 4.6.4 Fluctuating pressure and force coefficients 105 4.6.5 Correlation length 107 4.6.6 Total fluctuating forces on a slender body 108 4.7 Summary 110 References 111 viii Contents 5 Resonant dynamic response and effective static load distributions 113 5.1 Introduction 113 5.2 Principles of dynamic response 113 5.3 The random vibration or spectral approach 116 5.3.1 Along-wind response of a single-degree-of-freedom structure 118 5.3.2 Gust response factor 121 5.3.3 Peak factor 122 5.3.4 Dynamic response factor 122 5.3.5
Recommended publications
  • Applications of Systems Engineering to the Research, Design, And
    Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5000-52616 December 2011 Contract No. DE -AC36-08GO28308 Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems Authors: K. Dykes and R. Meadows With contributions from: F. Felker, P. Graf, M. Hand, M. Lunacek, J. Michalakes, P. Moriarty, W. Musial, and P. Veers Prepared under Task No. WE11.0341 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report NREL/TP-5000-52616 1617 Cole Boulevard Golden, Colorado 80401 December 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-14-2010 12:00 AM Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads Murray J. Morrison The University of Western Ontario Supervisor Gregory A. Kopp The University of Western Ontario Graduate Program in Civil and Environmental Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Murray J. Morrison 2010 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Civil Engineering Commons, and the Structural Engineering Commons Recommended Citation Morrison, Murray J., "Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads" (2010). Electronic Thesis and Dissertation Repository. 13. https://ir.lib.uwo.ca/etd/13 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Response of a Two-Story Residential House Under Realistic Fluctuating Wind Loads (Spine title: Realistic Wind Loads on the Roof of a Two-Story House) (Thesis Format: Monograph) by Murray J. Morrison Department of Civil and Environmental Engineering Faculty of Engineering A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Murray J. Morrison 2010 THE UNIVERSITY OF WESTERN ONTARIO SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr.
    [Show full text]
  • Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions
    GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS For more information, please contact: World Meteorological Organization Communications and Public Affairs Office Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] Tropical Cyclone Programme Weather and Disaster Risk Reduction Services Department Tel.: +41 (0) 22 730 84 53 – Fax: +41 (0) 22 730 81 28 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int D-WDS_101692 WMO/TD-No. 1555 GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS by B. A. Harper1, J. D. Kepert2 and J. D. Ginger3 August 2010 1BE (Hons), PhD (James Cook), Systems Engineering Australia Pty Ltd, Brisbane, Australia. 2BSc (Hons) (Western Australia), MSc, PhD (Monash), Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne, Australia. 3BSc Eng (Peradeniya-Sri Lanka), MEngSc (Monash), PhD (Queensland), Cyclone Testing Station, James Cook University, Townsville, Australia. © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Modulhandbuch Wind Engineering
    Module Handbook - Master „Wind Engineering“ 1 Module Handbook Master “Wind Engineering” Last updated_August 2019 Module Handbook - Master „Wind Engineering“ 2 Table of content Table of content .................................................................................................................................. 2 Module overview ................................................................................................................................. 3 Electives ............................................................................................................................................... 4 Module number [1]: Scientific and Technical Writing......................................................................... 5 Module number [2]: Global Wind industry and environmental conditions........................................ 6 Module number [3]: Wind farm project management and GIS .......................................................... 8 Module number [4]: Advanced Engineering Mathematics ............................................................... 10 Module number [5]: Mechanical Engineering for Electrical Engineers ............................................. 11 Module number [6]: Electrical Engineering for Mechanical Engineers ............................................. 13 Module number [7]: German for foreign students ........................................................................... 14 Module number [8]: English for engineers ......................................................................................
    [Show full text]
  • ESDU Catalogue 2020 Validated Engineering Design Methods ESDU Catalogue
    ESDU Catalogue 2020 Validated Engineering Design Methods ESDU Catalogue About ESDU ESDU has over 70 years of experience providing engineers with the information, data, and techniques needed to continually improve fundamental design and analysis. ESDU provides validated engineering design data, methods, and software that form an important part of the design operation of companies large and small throughout the world. ESDU’s wide range of industry-standard design tools are presented in over 1500 design guides with supporting software. Guided and approved by independent international expert Committees, and endorsed by key professional institutions, ESDU methods are developed by industry for industry. ESDU’s staff of engineers develops this valuable tool for a variety of industries, academia, and government institutions. www.ihsesdu.com Copyright © 2020 IHS Markit. All Rights Reserved II ESDU Catalogue ESDU Engineering Methods and Software The ESDU Catalog summarizes more than 350 Sections of validated design and analysis data, methods and over 200 related computer programs. ESDU Series, Sections, and Data Items ESDU methods and information are categorized into Series, Sections, and Data Items. Data Items provide a complete solution to a specific engineering topic or problem, including supporting theory, references, worked examples, and predictive software (if applicable). Collectively, Data Items form the foundation of ESDU. Data Items are prepared through ESDU’s validation process which involves independent guidance from committees of international experts to ensure the integrity and information of the methods. Consequently, every Data Item is presented in a clear, concise, and unambiguous format, and undergoes periodic review to ensure accuracy. Sections are comprised of groups of Data Items.
    [Show full text]
  • ESDU Academia Brochure
    ESDU Academia Brochure Engineering for Academia HOW TO ACCESS 70 YEARS OF AIRCRAFT DESIGN HISTORY! Next generation of Industry Experts ESDU by IHS Markit has over 1,500 design topics and the use of its design methodologies within Academia has become an important building block for students and faculty over the years. In this ever-demanding area ESDU will prepare students with the right tools that are being used within aircraft/aerospace oriented research, development and design industries ………. Many major universities worldwide use ESDU data and software in teaching and graduate & postgraduate research projects. You too can use ESDU to equip your students with the latest tools and knowledge that industry demands. ESDU's unbiased International Committees comprise of world renowned academics and experts from industry and research. Only after a rigorous review process and unanimous approval by the committee does a methodology become part of the ESDU Product. Engineering Departments ESDU data can also be applied by faculty heads within their teaching methods as well as incorporating into the curriculum. The unique advantage of this source of material is the ability to make the students consider the systems design aspects that will encompass, for example materials, fluid flows, pressure, fatigue and vibration. It encourages them to think laterally and emulate practical every day engineering tasks. Aerospace/Aeronautical Engineering: Aerodynamics, Performance, Fluid-Flow, Dynamics and control, Propulsion, Fatigue and Fracture Analysis, Vibration and Acoustics. Mechanical Engineering: Fluid dynamics, Mechanisms, Tribology, Statistics, Thermodynamics, Vibration, Fatigue, Structures and Materials. Manufacturing Engineering/Metallurgy: Mechanical Properties, Microstructure, Structures, and Bonding Deformation of Materials, Composites and Material Selection Civil/Structural Engineering: Structural Engineering and Fluid Mechanics.
    [Show full text]
  • Company Name First Name Last Name Job Title Country
    Company Name First Name Last Name Job Title Country 1StopWind Ltd Arran Bell Operations Manager United Kingdom 1StopWind Ltd. Alan Mckerns United Kingdom 1StopWind Ltd. Bernadette McAulay Finance Manager United Kingdom 1StopWind Ltd. Joel Telling General Manager United Kingdom 23 Degrees Renewables Ltd Ed Woodrow Business Development United Kingdom 24SEA bvba Gert De Sitter Owner Belgium 3S Europe GmbH Matthias Lamp Vice President of Sales & Marketing Germany 3sun Denmark ApS Christian Christensen Operations Director Denmark 3sun Group Limited Jody Potter United Kingdom 3sun Group Limited Graham Hacon VP Business Development, Offshore Wind United Kingdom 3sun Group Limited Sherri Smith Company Secretary United Kingdom 3W Industri Service Simon Øland Project manager - sales Denmark 3W Industri Service Kenneth Pedersen IWI-S Denmark 4C Offshore Lauren Anderson United Kingdom 4C Offshore Richard Aukland Director United Kingdom 4C Offshore Rosie Haworth Market Researcher United Kingdom 4C Offshore Vincenzo Poidomani Principal Geotechnical Engineer United Kingdom 8.2 Bruno ALLAIN CEO France 8.2 Monitoring GmbH Bernd Höring Managing director Germany 920338402 Ellinor Meling Ceo Norway A&P Group Emma Harrick United Kingdom A.P. Møller Holding Simon Ibsen Investor Denmark A/S Dan-Bunkering Ltd. Jens Kirk Denmark A/S Dan-Bunkering Ltd. Michael Brunø-Sørensen Senior Bunker Trader Denmark A1wind Aps Martin Jensen Director / A1wind Aps Denmark AAF Ltd Steven Brett Europe MFAS Aftermarket Sales Manager United Kingdom AAG Allan Tarp Sales Manager Denmark
    [Show full text]
  • WIND ENERGY-RELATED ATMOSPHERIC BOUNDARY LAYER LARGE-EDDY SIMULATION USING Openfoam
    Conference Paper Wind Energy-Related Atmospheric NREL/CP-500-48905 Boundary Layer Large-Eddy August 2010 Simulation Using OpenFOAM Preprint M.J. Churchfield and P.J. Moriarty National Renewable Energy Laboratory G. Vijayakumar and J.G. Brasseur The Pennsylvania State University Presented at 19th Symposium on Boundary Layers and Turbulence Keystone, Colorado August 2-6, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Dynamic Performance of Bridges and Vehicles Under Strong Wind Suren Chen Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Dynamic performance of bridges and vehicles under strong wind Suren Chen Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Civil and Environmental Engineering Commons Recommended Citation Chen, Suren, "Dynamic performance of bridges and vehicles under strong wind" (2004). LSU Doctoral Dissertations. 1949. https://digitalcommons.lsu.edu/gradschool_dissertations/1949 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. DYNAMIC PERFORMANCE OF BRIDGES AND VEHICLES UNDER STRONG WIND A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Civil and Environmental Engineering By Suren Chen B.S., Tongji University, 1994 M.S., Tongji University, 1997 May 2004 DEDICATION To my parents, my wife and my son ii ACKNOWLEDGMENTS I am indebted to Professor Steve Cai, my advisor, for his active mentorship, constant encouragement, and support during my Ph. D study at LSU and KSU. It has been my greatest pleasure to work with such a brilliant, considerate and friendly scholar. I also want to express my sincere gratitude to Professor Christopher J. Baker of The University of Birmingham. The advice obtained from him on the vehicle accident assessment was very helpful and encouraging.
    [Show full text]
  • Wind Engineering
    Development and Application of a Multipoint Inverse Design Method for Horizontal Axis Wind Turbines by Michael S. Selig and James L. Tangier Reprinted from WIND ENGINEERING VOLUME 19 No.2 1995 MULTI-SCIENCE PUBLISHING CO. LTD. 107 High Street, Brentwood, Essex CMI4 4RX, United Kingdom Development and Application of a Multipoint Inverse Design Method for Horizontal Axis Wind Thrbines Michael S. Selig" and James L. Tangle... ·" • Department of Aeronautical and Astronautical Engineering. University of Illinois at Urbana-Champaign. Urbana. Illinois 61801; "Wind Technology Division, National Renewable Energy Laboratory, Golden, Colorado 80401. ABSTRACT An inverse method for the aerodynamic design of horizontal axis wind turbines has been developed.. and a computer program (PROPID) has been written based on the approach. The new inverse approach is a significant improvement over the traditional approach of repeatedly prescribing the blade geometry and then determining the performance through analysis. Instead. with the current method. the desired rotor peiformance characteristics and blade aerodynamic characteristics can be directly specified from which the corre­ sponding blade geometry is determined. To illustrate the inverse design method, a new 10.5 m blade for use on the stall-regulated three-bladed Micon 108 and Bonus 120 wind turbine generators has been designed to replace the ageing AeroStar 9.06 m blade cur­ rently in widespread use on thousands of machines. The design effort primarily focused on improving the blade performance for the Micon 108 machines since they are more numer­ ous than the Bonus 120's. As compared with the AeroStar 9,06 m blade. the improvement in annual energy of the new blade is 13-25% over the average wind speed range 4.47-8.94 m/s (10-20 mph) for the Micon 108.
    [Show full text]
  • Workshop on Research Needs in Wing Engineering
    NISTIR5597 Proceedings Workshop on Research Needs in Wind Engineering Richard D. Marshall, Editor February 1995 Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, U.S. Department of Commerce Ronald H. Brown, Secreta~ Technology Administration Mary L. Good, UnderSecretaryfor Technology National Institute of Standards and Technology Arati A. Prabhakar, Director ABSTRACT This report presents findings and recommendations developed at a workshop on research needs in wind engineering convened at Gaithersburg, Maryland, on September 12-13, 1994. Representatives from universities, the private sector, and Federal agencies currently engaged in or otherwise supporting wind engineering research presented program overviews and participated in working group sessions addressing various aspects of wind engineering research and wind disaster mitigation. Research needs and topics for technology transfer were identified and prioritized. It was concluded that current funding of wind engirering research in the United States falls far short of what is needed to effectively address the problem of spiraling losses due to wind darnage. There is, however, considerable wind engineering knowledge now available for implementation by the model building codes and by the bu~ding industry in general. This implementation will require coordination of the efforts of industry, universities, and State and Federal agencies, along with appropriate funding. Keywords: buiIding technology; codes and standards; hurricanes; meteorology; technology transfer: tornadoes; wind climate; wind disasters; wind engineering; wind research; wind tunnels. TABLE OF CONTENTS ... ABSTRACT . 111 EXECUTIVE SUMMARY . .. vii 1.0 INTRODUCTION . ..1 2.0 BACKGROUND . ..1 3.0 WORKSHOP ORGANIZATION AND OBJECTIVE . ...3 4.0 SUMMARY OF F~~GSAND RECOMMENDATIONS . ...3 5.0 WORKING GROUP REPORTS .
    [Show full text]
  • Model Studies of Wind Effects
    MODEL STUDIES OF WIND EFFECfS - A PERSPECfIYE ON THE PROBLEMS OF EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION D. Surry and N. Isyumov Faculty of Engineering Science ll1e University of Western Ontario London, Ontario, Canada N6A 5B9' A!3STRACf mathcm·atidans. physiologists. and behavioural psychologists. 111is breadth makes it virtually impossible to cover all areas of Wind engineering, which comprises a large part of non­ wind engineering, let alone other non-aeronautical applkations. aeronautical aerodynamics, is rapidly emerging as a separate Many useful reviews of the subject area can be found in the and coherent discipline. A brief historicai review contrasts the Ii tera ture (4-8). more iIT.portant differences in the application of aerodynamics The perspective presented here attempts to be balanced; to wind engineering, as opposed to the aerospace field. The however, it is admittedly highlighted by the authors' experi­ strengths and weaknesses of the current methodology and ences with particular aspects of wind engineering - specifical­ technique of wind effects simulation are discussed, with em­ ly. the interaction between wind and structures, and the dis­ phasis on modelling of the natural wind, wind induced effects persion of plumes. Furthermore, in this paper, applications on buildings and structures, and diffusion problems. Instru­ are stressed, i.e. engineering tests, rather than more basic mentation in use is reviewed and areas requiring improved experiments whose techniques tend to merge with those of capabilities are indicated. other disciplines. WIND ENGINEERING - ITS EMERGENCE INTRODUCfION AS A COHERENT DISCIPLINE In the last Congress (!), a session was entitled" Broad rt is neither the aim nor a possibiJi ty to detail here the Initiatives"; however; only one paper (2) dealt exclusively history of wind engineering and the related disciplines from with the increasing applkation of aerospace facilities to prob­ which it emerged, although so'me fascinating historical treat­ lems in non-"eronautical aerodynamics.
    [Show full text]