THE HIDDEN SUBGROUP PROBLEM by ANALES DEBHAUMIK A

Total Page:16

File Type:pdf, Size:1020Kb

THE HIDDEN SUBGROUP PROBLEM by ANALES DEBHAUMIK A THE HIDDEN SUBGROUP PROBLEM By ANALES DEBHAUMIK A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 c 2010 Anales Debhaumik 2 I dedicate this to everyone who helped me in my research. 3 ACKNOWLEDGMENTS First and foremost I would like to express my sincerest gratitude to my advisor Dr Alexandre Turull. Without his guidance and persistent help this thesis would not have been possible. I would also like to thank sincerely my committee members for their help and constant encouragement. Finally I would like to thank my wife Manisha Brahmachary for her love and constant support. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................. 4 ABSTRACT ......................................... 6 CHAPTER 1 INTRODUCTION ................................... 8 1.1 Preliminaries .................................. 8 1.2 Quantum Computing .............................. 11 1.3 Quantum Fourier Transform .......................... 12 1.4 Hidden Subgroup Problem .......................... 14 1.5 Distinguishability ................................ 18 2 HIDDEN SUBGROUPS FOR ALMOST ABELIAN GROUPS ........... 20 2.1 Algorithm to find the hidden subgroups .................... 20 2.2 An Almost Abelian Group of Order 3 2n ................... 22 · 3 KEMPE-SHALEV DISTINGUISHABLITY ..................... 33 4 ALGORITHMIC DISTINGUISHABILITY ...................... 43 4.1 An algorithm for distinguishability ....................... 43 4.2 Abelian Groups ................................. 45 4.3 Frobenius Groups ............................... 46 5 SOME CALCULATIONS ............................... 55 5.1 Kempe-Shalev distinguishability ........................ 55 5.2 Algorithmic Distinguishability ......................... 56 APPENDIX A TABLES FOR CHAPTER 4 ............................. 59 B TABLE FOR CHAPTER 5 .............................. 70 REFERENCES ....................................... 71 BIOGRAPHICAL SKETCH ................................ 73 5 Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy THE HIDDEN SUBGROUP PROBLEM By Anales Debhaumik May 2010 Chair: Alexandre Turull Major: Mathematics The topic of my research is the Hidden Subgroup Problem. The problem can be stated as follows: Problem. (Hidden Subgroup Problem) Let G be a finite group and H a subgroup. Given a black-box function f : G S which is constant on (left)-cosets gH of H and takes → different values for different cosets, determine a set of generators for H. Efficient classical algorithms for the Hidden Subgroup Problem are not known. However, efficient quantum algorithms are known for this problem in some cases. One such algorithm implies Shor’s famous efficient method for breaking the RSA cryptosystem. An efficient solution of this problem in all cases would have wide implications in the field of theoretical computer science. For example it would most likely solve some classical problems which are neither NP complete nor are in P. A solution would also − imply a solution for Graph Isomorphism problem which is a long standing problem in computer science. In the present thesis, we study some quantum algorithms for the Hidden Sub- group Problem. We discuss Quantum Fourier Tranform and its applications to the Hidden Subgroup Problem. We discuss Almost Abelian groups and show that there is a quantum algorithm that solves the Hidden Subgroup Problem for them. We also study the decision version of the problem. We compare two different formalizations of 6 this concept. We show that these formalizations coincide in the case of abelian and Frobenius groups. We conclude with a family of groups where the formalizations may not coincide. 7 CHAPTER 1 INTRODUCTION 1.1 Preliminaries A quantum computer is an, at present theoretical, machine which performs computations on the basis of the laws of quantum mechanics. Such a device can prepare quantum states and perform measurements on them. As with classical computers, numerical data form the input and the output for the quantum computer. The processing of this data in a quantum computer may involve actions on them which are not classical. As a result, the output of a quantum computer is not fully determined by its input. Given a particular input, various outputs may occur with different probabilities. In this sense, quantum computers behave differently than classical ones. Though quantum computing as a field of research is still in its infancy significant amount of work has already been done in this field. In 1985 Deutsch gave a quantum algorithm for a very simple problem and showed that it worked better than a classical one. In his problem we are given a blackbox which computes a simple function. The box takes two bits as input and outputs two bits. It implements one of the four following functions from F2 F2: 2 → 2 f1(x, y)=(x, y) f2(x, y)=(x, y + 1) f3(x, y)=(x, x + y) f4(x, y)=(x, x + y + 1) The goal is to determine whether the function implemented by the box is in the set f , f or f , f . On a classical computer it will take 2 queries to find the answer to { 1 2} { 3 4} the question. But on a quantum computer it will take just 1 query to find the answer. In 1992 Deutsch and Jozsa (7) gave the first non-trivial quantum algorithm. Their problem is the generalization of the above problem. In this problem we are given a function n f : F F2. The goal is to find out how many queries to the box are needed in the 2 → 8 worst case to determine whether the function is a constant or balanced (0 on one half of the domain states and 1 on the other half). For the classical case the problem has exponential query complexity. But for the quantum case as was shown by Deutsch and Jozsa only a single query is needed. Motivated by this Berstein and Vazirani (3) gave a quantum algorithm which worked significantly faster (super-polynomial speedup) than the best classical algorithm. The Berstein Vazirani problem has a non-recursive and a n recursive version. In the non-recursive version we are given a function f : F F2. 2 → The function is fs (x) = x.s for some unknown s where x.s denotes the dot product. The goal is to find s. In the classical case the query complexity is at least n whereas for the quantum case only a single query is needed. The recursive version is a little more complex than the non-recursive one. Simon (24) then gave a quantum algorithm which performed exponentially faster than its classical counterpart. In Simon’s problem we are given an integer m 1 and a function f : Fm R, where R is a finite set. We also ≥ 2 → know that there exists a nonzero element s Fm such that for all x, y Fm f (x) = f (y) ∈ 2 ∈ 2 if and only if x=y or x = y + s. The goal is to find s. All these paved the way for Shor’s celebrated paper on factoring and discrete log (23). There is no known efficient classical algorithm for factoring a large number n. The security and robustness of RSA public-key cryptosystem is based on this fact. Shor showed in his paper that given a quantum computer factoring of a number n can be done in polynomial time. Simon’s and Shor’s algorithms laid the framework for a very important problem of quantum computation known as the Hidden Subgroup Problem. The problem can be stated as follows. Problem. (Hidden Subgroup Problem) Let G be a finite group and H a subgroup. Given a black-box function f : G S which is constant on (left)-cosets gH of H and takes → different values for different cosets, determine a set of generators for H. The Hidden Subgroup Problem is at the heart of Shor’s and Simon’s problems. In Shor’s problem given n let a be any integer such gcd(a, n)=1. Let r be the order of 9 a Z∗. The goal is to find r. In this problem G is Z and H is rZ. For practical purposes ∈ n l x we can work with Zm where m = 2 > n. The function f is given by f (x) = a + nZ. Simon’s problem reduces to a special case of the Hidden Subgroup Problem if we take G to be Fm and H = 0, s . 2 { } Efficient quantum algorithms for The Hidden Subgroup Problem are known for abelian groups thanks to the efforts of Shor, Simon, Deutsch etc (7). The non-abelian case still poses a challenge. Some positive results have been obtained for Dihedral group by M. Ettinger and P. Hoyer (8), G. Kuperberg (19), Regev (21), Dave Bacon, Andrew M. Childs and Wim van Dam (1). Efficient quantum algorithms have been obtained for semidirect product of the forms Zpr ⋊ Zp by Yoshifumi Inui and Francois r1 r2 rn Le Gall (15), for ZN ⋊ Zp where N = p p ...p and prime p does not divide pj 1 by 1 2 n − Dong Pyo Chi, Jeong San Kim and Soojoon Lee (5), for some metacyclic groups and r all groups of the form Zp ⋊ Zp for any prime p and a fixed r by Dave Bacon, Andrew M. n Childs and Wim van Dam (1), for Wreath product of the form Z Z2 by M. Rotteler and T. 2 ≀ Beth (4), for some solvable groups by K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen (10) and for groups with small commutators by G. Ivanyos, F. Magniez, and M. Santha (17). Unfortunately a unified solution has still not been found. An efficient solution of this problem would have wide implications in the field of theoretical computer science. For example it would most likely solve some classical problems which are neither NP complete nor are in P. A solution would also imply a − solution for Graph Isomorphism problem which is a long standing problem in computer science.
Recommended publications
  • A Note on the Security of CSIDH
    A note on the security of CSIDH Jean-Fran¸cois Biasse1, Annamaria Iezzi1, and Michael J. Jacobson, Jr.2 1 Department of Mathematics and Statistics University of South Florida biasse,aiezzi @usf.edu 2 { } Department of Computer Science University of Calgary [email protected] Abstract. We propose an algorithm for computing an isogeny between two elliptic curves E1,E2 defined over a finite field such that there is an imaginary quadratic order satisfying End(Ei) for i = 1, 2. This O O ≃ concerns ordinary curves and supersingular curves defined over Fp (the latter used in the recent CSIDH proposal). Our algorithm has heuris- tic asymptotic run time eO√log(|∆|) and requires polynomial quantum memory and eO√log(|∆|) classical memory, where ∆ is the discriminant of . This asymptotic complexity outperforms all other available method O for computing isogenies. We also show that a variant of our method has asymptotic run time ˜ eO√log(|∆|) while requesting only polynomial memory (both quantum and classical). 1 Introduction Given two elliptic curves E1, E2 defined over a finite field Fq, the isogeny prob- lem is to compute an isogeny φ : E E , i.e. a non-constant morphism that 1 → 2 maps the identity point on E1 to the identity point on E2. There are two dif- ferent types of elliptic curves: ordinary and supersingular. The latter have very particular properties that impact the resolution of the isogeny problem. The first instance of a cryptosystem based on the hardness of computing isogenies arXiv:1806.03656v4 [cs.CR] 1 Aug 2018 was due to Couveignes [12], and its concept was independently rediscovered by Stolbunov [31].
    [Show full text]
  • Ph 219B/CS 219B
    1 Ph 219b/CS 219b Exercises Due: Wednesday 22 February 2006 6.1 Estimating the trace of a unitary matrix Recall that using an oracle that applies the conditional unitary Λ(U), Λ(U): |0i⊗|ψi7→|0i⊗|ψi , |1i⊗|ψi7→|1i⊗U|ψi (1) (where U is a unitary transformation acting on n qubits), we can measure the eigenvalues of U. If the state |ψi is the eigenstate |λi of U with eigenvalue λ = exp(2πiφ), then√ by querying the oracle k times, we can determine φ to accuracy O(1/ k). But suppose that we replace the pure state |ψi in eq. (1) by the max- imally mixed state of n qubits, ρ = I/2n. a) Show that, with k queries, we can estimate both the real part and n the imaginary√ part of tr (U) /2 , the normalized trace of U,to accuracy O(1/ k). b) Given a polynomial-size quantum circuit, the problem of estimat- ing to fixed accuracy the normalized trace of the unitary trans- formation realized by the circuit is believed to be a hard problem classically. Explain how this problem can be solved efficiently with a quantum computer. The initial state needed for each query consists of one qubit in the pure state |0i and n qubits in the maximally mixed state. Surprisingly, then, the initial state of the computer that we require to run this (apparently) powerful quantum algorithm contains only a constant number of “clean” qubits, and O(n) very noisy qubits. 6.2 A generalization of Simon’s problem n Simon’s problem is a hidden subgroup problem with G = Z2 and k H = Z2 = {0,a}.
    [Show full text]
  • Hidden Shift Attacks on Isogeny-Based Protocols
    One-way functions and malleability oracles: Hidden shift attacks on isogeny-based protocols P´eterKutas1, Simon-Philipp Merz2, Christophe Petit3;1, and Charlotte Weitk¨amper1 1 University of Birmingham, UK 2 Royal Holloway, University of London, UK 3 Universit´elibre de Bruxelles, Belgium Abstract. Supersingular isogeny Diffie-Hellman key exchange (SIDH) is a post-quantum protocol based on the presumed hardness of com- puting an isogeny between two supersingular elliptic curves given some additional torsion point information. Unlike other isogeny-based proto- cols, SIDH has been widely believed to be immune to subexponential quantum attacks because of the non-commutative structure of the endo- morphism rings of supersingular curves. We contradict this commonly believed misconception in this paper. More precisely, we highlight the existence of an abelian group action on the SIDH key space, and we show that for sufficiently unbalanced and over- stretched SIDH parameters, this action can be efficiently computed (heuris- tically) using the torsion point information revealed in the protocol. This reduces the underlying hardness assumption to a hidden shift problem instance which can be solved in quantum subexponential time. We formulate our attack in a new framework allowing the inversion of one-way functions in quantum subexponential time provided a malleabil- ity oracle with respect to some commutative group action. This frame- work unifies our new attack with earlier subexponential quantum attacks on isogeny-based protocols, and it may be of further interest for crypt- analysis. 1 Introduction The hardness of solving mathematical problems such as integer factorization or the computation of discrete logarithms in finite fields and elliptic curve groups guarantees the security of most currently deployed cryptographic protocols.
    [Show full text]
  • Arxiv:1805.04179V2
    The Hidden Subgroup Problem and Post-quantum Group-based Cryptography Kelsey Horan1 and Delaram Kahrobaei2,3 1 The Graduate Center, CUNY, USA [email protected] 2 The Graduate Center and NYCCT, CUNY 3 New York University, USA [email protected] ⋆ Abstract. In this paper we discuss the Hidden Subgroup Problem (HSP) in relation to post-quantum cryptography. We review the relationship between HSP and other computational problems discuss an optimal so- lution method, and review the known results about the quantum com- plexity of HSP. We also overview some platforms for group-based cryp- tosystems. Notably, efficient algorithms for solving HSP in the proposed infinite group platforms are not yet known. Keywords: Hidden Subgroup Problem, Quantum Computation, Post-Quantum Cryptography, Group-based Cryptography 1 Introduction In August 2015 the National Security Agency (NSA) announced plans to upgrade security standards; the goal is to replace all deployed cryptographic protocols with quantum secure protocols. This transition requires a new security standard to be accepted by the National Institute of Standards and Technology (NIST). Proposals for quantum secure cryptosystems and protocols have been submitted for the standardization process. There are six main primitives currently pro- posed to be quantum-safe: (1) lattice-based (2) code-based (3) isogeny-based (4) multivariate-based (5) hash-based, and (6) group-based cryptographic schemes. arXiv:1805.04179v2 [cs.CR] 21 May 2018 One goal of cryptography, as it relates to complexity theory, is to analyze the complexity assumptions used as the basis for various cryptographic protocols and schemes. A central question is determining how to generate intractible instances of these problems upon which to implement an actual cryptographic scheme.
    [Show full text]
  • Fully Graphical Treatment of the Quantum Algorithm for the Hidden Subgroup Problem
    FULLY GRAPHICAL TREATMENT OF THE QUANTUM ALGORITHM FOR THE HIDDEN SUBGROUP PROBLEM STEFANO GOGIOSO AND ALEKS KISSINGER Quantum Group, University of Oxford, UK iCIS, Radboud University. Nijmegen, Netherlands Abstract. The abelian Hidden Subgroup Problem (HSP) is extremely general, and many problems with known quantum exponential speed-up (such as integers factorisation, the discrete logarithm and Simon's problem) can be seen as specific instances of it. The traditional presentation of the quantum protocol for the abelian HSP is low-level, and relies heavily on the the interplay between classical group theory and complex vector spaces. Instead, we give a high-level diagrammatic presentation which showcases the quantum structures truly at play. Specifically, we provide the first fully diagrammatic proof of correctness for the abelian HSP protocol, showing that strongly complementary observables are the key ingredient to its success. Being fully diagrammatic, our proof extends beyond the traditional case of finite-dimensional quantum theory: for example, we can use it to show that Simon's problem can be efficiently solved in real quantum theory, and to obtain a protocol that solves the HSP for certain infinite abelian groups. 1. Introduction The advent of quantum computing promises to solve a number number of problems which have until now proven intractable for classical computers. Amongst these, one of the most famous is Shor's algorithm [Sho95, EJ96]: it allows for an efficient solution of the integer factorisation problem and the discrete logarithm problem, the hardness of which underlies many of the cryptographic algorithms which we currently entrust with our digital security (such as RSA and DHKE).
    [Show full text]
  • Quantum Factoring, Discrete Logarithms, and the Hidden Subgroup Problem
    Q UANTUM C OMPUTATION QUANTUM FACTORING, DISCRETE LOGARITHMS, AND THE HIDDEN SUBGROUP PROBLEM Among the most remarkable successes of quantum computation are Shor’s efficient quantum algorithms for the computational tasks of integer factorization and the evaluation of discrete logarithms. This article reviews the essential ingredients of these algorithms and draws out the unifying generalization of the so-called hidden subgroup problem. uantum algorithms exploit quantum- these issues, including further applications such physical effects to provide new modes as the evaluation of discrete logarithms. I will of computation that are not available outline a unifying generalization of these ideas: Qto “conventional” (classical) comput- the so-called hidden subgroup problem, which is ers. In some cases, these modes provide efficient just a natural group-theoretic generalization of algorithms for computational tasks for which no the periodicity determination problem. Finally, efficient classical algorithm is known. The most we’ll examine some interesting open questions celebrated quantum algorithm to date is Shor’s related to the hidden subgroup problem for non- algorithm for integer factorization.1–3 It provides commutative groups, where future quantum al- a method for factoring any integer of n digits in gorithms might have a substantial impact. an amount of time (for example, in a number of computational steps), whose length grows less rapidly than O(n3). Thus, it is a polynomial time Periodicity algorithm in contrast to the best-known classi- Think of periodicity determination as a par- cal algorithm for this fundamental problem, ticular kind of pattern recognition. Quantum which runs in superpolynomial time of order computers can store and process a large volume exp(n1/3(log n)2/3).
    [Show full text]
  • The Hidden Subgroup Problem for Infinite Groups
    The hidden subgroup problem for infinite groups Greg Kuperberg, UC Davis We consider the hidden subgroup problem for infinite groups, beyond the celebrated original cases estab- lished by Shor and Kitaev. 1 Motivation and main results Some of the most important quantum algorithms solve rigorously stated computational problems and are superpolynomially faster than classical alternatives. This includes Shor’s algorithm for period finding [13]. The hidden subgroup problem is a popular framework for many such algorithms [10]. If G is a discrete group and X is an unstructured set, a function f : G ! X hides a subgroup H ≤ G means that f (x) = f (y) if and only if y = xh for some h 2 H. In other words, f is a hiding function for the hidden subgroup H when it is right H-periodic and otherwise injective, as summarized in this commutative diagram: f G X G=H The hidden subgroup problem (HSP) is then the problem of calculating H from arithmetic in G and efficient access to f . The computational complexity of HSP depends greatly on the ambient group G, as well as other criteria such as that H is normal or lies in a specific conjugacy class of subgroups. The happiest cases of HSP are those that both have an efficient quantum algorithm, and an unconditional proof that HSP is classically intractable when f is given by an oracle. Shor’s algorithm solves HSP when G = Z, the group of integers under addition. Even though Z is infinite and Shor’s algorithm is a major motivation for HSP, many of the results since then have been about HSP for finite groups [2, Ch.
    [Show full text]
  • Quantum Algorithm for a Generalized Hidden Shift Problem
    Quantum algorithm for a generalized hidden shift problem Andrew Childs Wim van Dam Caltech UC Santa Barbara What is the power of quantum computers? Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot. • Manin/Feynman, early 1980s: Simulating quantum systems • Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems • Shor 1994: Factoring, discrete logarithm • Many authors, late 1990s–Present: Some nonabelian hidden subgroup problems • Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial • Hallgren 2002: Pell’s equation • van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol) • van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums • Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal • van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations • Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields What is the power of quantum computers? Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot. • Manin/Feynman, early 1980s: Simulating quantum systems • Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems • Shor 1994: Factoring, discrete logarithm • Many authors, late 1990s–Present: Some nonabelian hidden subgroup problems • Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial • Hallgren 2002: Pell’s equation • van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol) • van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums • Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal • van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations • Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields Questions: What is the power of quantum computers? Quantum mechanical computers can efficiently solve problems that classical computers (apparently) cannot.
    [Show full text]
  • Generic Quantum Fourier Transforms
    GENERIC QUANTUM FOURIER TRANSFORMS Cristopher Moore Daniel Rockmore University of New Mexico Dartmouth College [email protected] [email protected] Alexander Russell University of Connecticut [email protected] Abstract problems over Abelian groups are well-understood, for The quantum Fourier transform (QFT) is the principal non-Abelian groups our understanding of these problems ingredient of most efficient quantum algorithms. We remains embarrassingly sporadic. Aside from their natu- present a generic framework for the construction of ral appeal, these lines of research are motivated by their efficient quantum circuits for the QFT by “quantizing” direct relationship to the graph isomorphism problem: an the highly successful separation of variables technique efficient solution to the hidden subgroup problem over the for the construction of efficient classical Fourier trans- (non-Abelian) symmetric groups would yield an efficient forms. Specifically, we apply the existence of computable quantum algorithm for graph isomorphism. Bratteli diagrams, adapted factorizations, and Gel’fand- Over the cyclic group Zn, the quantum Fourier Tsetlin bases to provide efficient quantum circuits for the transform refers to the transformation taking the state ∑ f (z)|zi to the state ∑ω fˆ(ω)|ωi, where QFT over a wide variety of finite Abelian and non-Abelian z∈Zn ∈Zn ˆ ω groups, including all group families for which efficient f : Zn → C is a function with k f k2 = 1 and f ( ) = 2πiωz/n QFTs are currently known and many new group families. ∑z f (z)e denotes the familiar discrete Fourier trans- Moreover, our method provides the first subexponential- form at the frequency ω.
    [Show full text]
  • Arxiv:Quant-Ph/0603140V1 15 Mar 2006
    IS GROVER’S ALGORITHM A QUANTUM HIDDEN SUBGROUP ALGORITHM ? SAMUEL J. LOMONACO, JR. AND LOUIS H. KAUFFMAN Abstract. The arguments given in this paper suggest that Grover’s and Shor’s algorithms are more closely related than one might at first expect. Specifically, we show that Grover’s algorithm can be viewed as a quantum al- gorithm which solves a non-abelian hidden subgroup problem (HSP). But we then go on to show that the standard non-abelian quantum hidden subgroup (QHS) algorithm can not find a solution to this particular HSP. This leaves open the question as to whether or not there is some mod- ification of the standard non-abelian QHS algorithm which is equivalent to Grover’s algorithm. Contents 1. Introduction 1 2. Definition of the hidden subgroup problem (HSP) and hidden subgroup algorithms 2 3. The generic QHS algorithm QRand 3 4. Pushing HSPs for the generic QHS algorithm QRand 4 5. Shor’s algorithm 5 6. Description of Grover’s algorithm 6 7. The symmetry hidden within Grover’s algorithm 7 8. A comparison of Grover’s and Shor’s algorithms 9 9. However 10 10. Conclusions and Open Questions 11 References 12 arXiv:quant-ph/0603140v1 15 Mar 2006 1. Introduction Is Grover’s algorithm a quantum hidden subgroup (QHS) algorithm ? We do not completely answer this question. Instead, we show that Grover’s algorithm is a QHS algorithm in the sense that it can be rephrased as a quantum algorithm which solves a non-abelian hidden subgroup problem (HSP) on the sym- metric group SN .
    [Show full text]
  • The Hidden Subgroup Problem for Infinite Groups
    Shor HSP Complexity Rationals Free groups Lattices Epilogue The hidden subgroup problem for infinite groups Greg Kuperberg UC Davis October 29, 2020 (Paper in preparation.) 1/25 Shor HSP Complexity Rationals Free groups Lattices Epilogue Shor's algorithm Let f : Z ! X be a function to a set X such that: • We can compute f in polynomial time. • f (x + h) = f (x) for an unknown period h. • f (x) 6= f (y) when h 6 j x − y. Finding h from f is the hidden period problem, or the hidden subgroup problem for the integers Z. Theorem (Shor) A quantum computer can solve the hidden period problem in time poly(logh). I.e., in quantum polynomialp time in khkbit. Note: If f is black box, then this takes Ω(e h) = exp(Ω(khkbit)) classical queries. 2/25 Shor HSP Complexity Rationals Free groups Lattices Epilogue Factoring integers Corollary (Shor) Integers can be factored in quantum polynomial time. Suppose that N is odd and not a prime power. Shor's algorithm × reveals the order ord(a) of a prime residue a 2 (Z=N) via x f (x) = a 2 Z=N: If a is random, then ord(a) is even and b = aord(a)=2 6= ±1 with good odds, whence Njb2 − 1 = (b + 1)(b − 1) N 6 j b ± 1 yields a factor of N. 3/25 Shor HSP Complexity Rationals Free groups Lattices Epilogue Shor-Kitaev k In a second example of HSP, let f : Z ! X be periodic with k respect to a finite-index sublattice H ≤ Z .
    [Show full text]
  • [Quant-Ph] 8 Feb 2021 Ups That Suppose H W Rbesaeqatmplnmal Equivalent
    A NEW QUANTUM ALGORITHM FOR THE HIDDEN SHIFT Zn PROBLEM IN 2t GERGELY CSAJI´ E¨otv¨os Lor´and University, 1117 Budapest, P´azm´any P´eter s´et´any 1/A Budapest, 1185, Hungary [email protected] February 9, 2021 Abstract In this paper we make a step towards a time and space efficient algorithm n for the hidden shift problem for groups of the form Zk . We give a solution to the case when k is a power of 2, which has polynomial running time in n, and only uses quadratic classical, and linear quantum space in n log(k). It can be a useful tool in the general case of the hidden shift and hidden subgroup problems too, since one of the main algorithms made to solve them can use this algorithm as a subroutine in its recursive steps, making it more efficient in some instances. 1 Introduction The hidden subgroup and hidden shift problems have been intensively studied by several authors since Shor’s discovery of efficient factoring and discrete log- arithm algorithms[7]. Many of the problems that have an exponentially faster quantum algorithm are instances of the first one and the latter is a closely re- lated problem, which is useful for example when we are dealing with the hidden subgroup problem in groups of the form G ⋊ Z2, G abelian. The hidden subgroup problem consists of a finite group G, a subgroup H G, ≤ a finite set S 0, 1 l, (this l is called the encoding length) and a function ⊂ { } f : G S such that f(x)= f(y) if and only if x and y are both elements of the → same left coset of H.
    [Show full text]