A NEW QUANTUM ALGORITHM FOR THE HIDDEN SHIFT Zn PROBLEM IN 2t GERGELY CSAJI´ E¨otv¨os Lor´and University, 1117 Budapest, P´azm´any P´eter s´et´any 1/A Budapest, 1185, Hungary
[email protected] February 9, 2021 Abstract In this paper we make a step towards a time and space efficient algorithm n for the hidden shift problem for groups of the form Zk . We give a solution to the case when k is a power of 2, which has polynomial running time in n, and only uses quadratic classical, and linear quantum space in n log(k). It can be a useful tool in the general case of the hidden shift and hidden subgroup problems too, since one of the main algorithms made to solve them can use this algorithm as a subroutine in its recursive steps, making it more efficient in some instances. 1 Introduction The hidden subgroup and hidden shift problems have been intensively studied by several authors since Shor’s discovery of efficient factoring and discrete log- arithm algorithms[7]. Many of the problems that have an exponentially faster quantum algorithm are instances of the first one and the latter is a closely re- lated problem, which is useful for example when we are dealing with the hidden subgroup problem in groups of the form G ⋊ Z2, G abelian. The hidden subgroup problem consists of a finite group G, a subgroup H G, ≤ a finite set S 0, 1 l, (this l is called the encoding length) and a function ⊂ { } f : G S such that f(x)= f(y) if and only if x and y are both elements of the → same left coset of H.